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Agenda

● Overview of Cray Performance Tools

● Identifying slowest areas of a program

● Tips for analyzing program performance
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Overview of Cray Performance Tools

Load modules to access software

Choose experiment to target your goal

Visualize application bottlenecks
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Goals

● Reduce the time investment associated with porting 
and tuning applications on Cray systems

● Analyze whole-program behavior across many nodes 
to identify critical performance bottlenecks within a 
program

● Improve your profiling experience by using simple (lite 
mode) and/or advanced interfaces for a wealth of 
capability that targets analyzing large HPC jobs
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Functional Highlights

● Whole program performance analysis with
● Novice and advanced user interfaces

● Support for MPI, SHMEM, OpenMP, PGAS, OpenACC, CUDA

● Load imbalance detection

● HW counter metrics (hit rates, computational intensity, etc.)

● Observations on inefficiencies

● Data correlation to user source

● Minimal program perturbation

● Sampling, tracing with runtime summarization (RTS), full trace (timeline) 
modes available

● Supports CCE, Intel and GCC compilers on Cray XC systems

● Supports CCE on Cray CS systems
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Components

● CrayPat and CrayPat-lite
● Identifies top time consuming routines, work load imbalance, MPI rank 

placement strategies, etc.

● PAPI
● Performance counters (used by CrayPat or directly by user)

● Cray Apprentice2
● Visualize load imbalance, excessive communication, network contention, 

excessive serialization

● Reveal
● View CCE optimization messages, key loops in program, high bandwidth 

memory traffic, add OpenMP to program
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Cray Performance Tools Status

● perftools-base/7.0.0 released in Dec 2017

● What’s new?

● Perftools-lite performance improvements (execution, scaling)

● Performance data experiment directory

● Memory and vector sensitivity metrics
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How to Access Cray Performance Tools

perftools-base module 

● Provides access to performance tools instrumentation modules, 
documentation, Reveal and Apprentice2

● Doesn’t impact program build

● If not loaded by default on a system, you can load in your .profile 
or .login and leave it loaded

● Once loaded, do a ‘module avail perftools’ to see available 
instrumentation modules
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Program Instrumentation Modules

● Instrumentation modules prepare an application for performance data 
collection

> module avail perftools

--------- /opt/cray/pe/perftools/7.0.0/modulefiles ---------

perftools

perftools-lite

perftools-lite-events 

perftools-lite-gpu

perftools-lite-hbm

perftools-lite-loops 

perftools-nwpc

Use first to get basic 

program 

performance profile
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Interfaces Available

● CrayPat-lite: simple interface for convenience

● CrayPat: advanced interface for in-depth performance 

investigation and tuning assistance as well as data 

collection control

● Both offer:
● Whole program analysis across many nodes

● Indication of causes of problems

● Ability to easily switch between the two interfaces
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Simple vs Advanced Interface

● Has fewer steps

● Is easier to use if you rarely profile applications (don’t have to 
remember how to use the tools)

● Provides a condensed text report

● Performs performance data processing and report generation at 
end of job on compute nodes

● Allows you to mix with advanced interface
● Run pat_report to get full report with simple interface
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Identifying Slowest Areas 
of a Program

Load perftools-lite

Build and run program

Interpret results
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Example: Using perftools-lite

● $ module load perftools-lite

● Build program
● Should see message at end of build from CrayPat saying that it 

created an instrumented executable
● Add –hlist=a to build with CCE listing for optimization feedback

● $ aprun/srun –n … ./my_program

● Performance data sent to STDOUT and to directory with 
unique name
● Refer to CCE listing with sampling by line data in Table 2
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29.  b-------<  do i3=2,n3-1

30.  b b-----<     do i2=2,n2-1

31.  b b Vr--<        do i1=1,n1

32.  b b Vr         u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)

33.  b b Vr    * + u(i1,i2,i3-1) + u(i1,i2,i3+1)

34.  b b Vr         u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)

35.  b b Vr    * + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)

36.  b b Vr-->        enddo

37.  b b Vr--<        do i1=2,n1-1

38.  b b Vr           r(i1,i2,i3) = v(i1,i2,i3)

39.  b b Vr    * - a(0) * u(i1,i2,i3)

40.  b b Vr    * - a(2) * ( u2(i1) + u1(i1-1) + u1(i1+1) )

41.  b b Vr    * - a(3) * ( u2(i1-1) + u2(i1+1) )

42.  b b Vr-->        enddo

43.  b b----->     enddo

44.  b------->  enddo

Example:  Cray loopmark Messages

cc/ftn/CC –hlist=a …

Inner-loops were vectorized and 

unrolled (Vr)

Outer loops were blocked (b)
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ftn-6289 ftn: VECTOR File = resid.f, Line = 29 

A loop starting at line 29 was not vectorized because a recurrence was found on "U1" between lines 

32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 29 

A loop starting at line 29 was blocked with block size 4.

ftn-6289 ftn: VECTOR File = resid.f, Line = 30 

A loop starting at line 30 was not vectorized because a recurrence was found on "U1" between lines 

32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 30 

A loop starting at line 30 was blocked with block size 4.

ftn-6005 ftn: SCALAR File = resid.f, Line = 31 

A loop starting at line 31 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 31 

A loop starting at line 31 was vectorized.

ftn-6005 ftn: SCALAR File = resid.f, Line = 37 

A loop starting at line 37 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 37 

A loop starting at line 37 was vectorized.

Example:  Cray loopmark Messages (cont)
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Example of Explain Utility

users/ldr> explain  ftn-6289

VECTOR:  A loop starting at line %s was not vectorized because a recurrence

was found on "var" between lines num and num.

Scalar code was generated for the loop because it contains a linear

recurrence.  The following loop would cause this message to be issued:

DO I = 2,100

B(I) = A(I-1)

A(I) = B(I)

ENDDO
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Example: perftools-lite Job Summary

#################################################################

# #

# CrayPat-lite Performance Statistics #

# #

#################################################################

CrayPat/X: Version 7.0.0.45 Revision 11f412d 11/08/17 09:36:36

Experiment: lite lite/sample_profile

Number of PEs (MPI ranks): 96

Numbers of PEs per Node: 16 PEs on each of 6 Nodes

Numbers of Threads per PE: 1

Number of Cores per Socket: 68

Execution start time: Tue Nov 14 11:44:06 2017

System name and speed: nid00037 1401 MHz (approx)

Intel Knights Landing CPU Family: 6 Model: 87 Stepping: 1

MCDRAM: 7.2 GHz, 16 GiB available as quad, cache (100% cache)

Avg Process Time: 612.10 secs

High Memory: 16,053.7 MBytes 167.2 MBytes per PE

I/O Read Rate: 1.764988 MBytes/sec

I/O Write Rate: 4.349897 MBytes/sec
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Example: perftools-lite Top Time Consumers

Table 1:  Profile by Function Group and Function (top 10 functions shown)

Samp% |     Samp |    Imb. |  Imb. |Group

|          |    Samp | Samp% | Function

|          |         |       |  PE=HIDE

100.0% | 55,605.7 |      -- |    -- |Total

|-------------------------------------------------------------------------

|  56.5% | 31,412.8 |      -- |    -- |USER

||------------------------------------------------------------------------

||  19.7% | 10,944.1 |   290.9 |  2.6% |create_boundary$boundary_

||  10.7% |  5,937.8 |   214.2 |  3.5% |get_block$blocks_

||   3.9% |  2,194.4 |     7.6 |  0.3% |create_distrb_balanced$distribution_

||   2.0% |  1,135.5 |   137.5 | 10.8% |impvmixt$vertical_mix_

||   1.9% |  1,064.8 |   124.2 | 10.5% |impvmixt_correct$vertical_mix_

||========================================================================

|  22.5% | 12,513.4 |      -- |    -- |ETC

||------------------------------------------------------------------------

||  20.1% | 11,151.4 | 2,758.6 | 19.9% |__cray_memcpy_KNL

||========================================================================

|  20.7% | 11,503.5 |      -- |    -- |MPI

||------------------------------------------------------------------------

||  11.1% |  6,171.6 | 1,785.4 | 22.5% |MPI_ALLREDUCE

||   7.9% |  4,377.8 | 3,254.2 | 42.7% |mpi_waitall
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Example: perftools-lite Observations
MPI Grid Detection:

There appears to be point-to-point MPI communication in a 32 X 32

grid pattern. The 20.7% of the total execution time spent in MPI

functions might be reduced with a rank order that maximizes

communication between ranks on the same node. The effect of several

rank orders is estimated below.

A file named MPICH_RANK_ORDER.Grid was generated along with this

report and contains usage instructions and the Hilbert rank order

from the following table.

Rank Order    On-Node    On-Node  MPICH_RANK_REORDER_METHOD

Bytes/PE  Bytes/PE%

of Total

Bytes/PE

Hilbert  1.413e+12     81.94%  3

SMP  1.053e+12     61.04%  1

Fold 9.405e+11     54.53%  2

RoundRobin 8.962e+11     51.96%  0
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Example: perftools-lite Hot Spots by Line

Table 3: Profile by Group, Function, and Line

Samp% | Samp | Imb. | Imb. | Group

| | Samp | Samp% | Function

| | | | Source

| | | | Line

| | | | PE=HIDE

100.0% | 60,665.8 | -- | -- | Total

|-----------------------------------------------------------------------------

| 94.6% | 57,390.6 | -- | -- | USER

||----------------------------------------------------------------------------

|| 82.1% | 49,835.3 | -- | -- | LAMMPS_NS::PairLJCut::compute

|||---------------------------------------------------------------------------

3|| 80.7% | 48,970.1 | -- | -- | src/Obj_xc30intel/../pair_lj_cut.cpp

||||--------------------------------------------------------------------------

4||| 3.9% | 2,359.8 | 100.2 | 4.1% | line.102

4||| 1.0% | 596.2 | 61.8 | 9.5% | line.105

4||| 8.3% | 5,022.4 | 683.6 | 12.1% | line.107

4||| 2.9% | 1,744.2 | 966.8 | 36.0% | line.108
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Get Additional Information Without Re-running

● Run pat_report after collecting data with lite mode

● pat_report my_programXXXs/ > full_rpt

● pat_report –O callers or pat_report –O callers+src

● pat_report –O calltree or pat_report –O calltree+src

● Check out load balance table

● Learn about related tables in “Table Notes”

● We try to suggest reports that dive deeper on a related topic

● Provide data aggregation method 
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Example: Load Balance by Max Time

Table 2: Profile of maximum function times (limited entries shown)

Samp% | Samp | Imb. | Imb. | Function

| | Samp | Samp% | PE=[max,min]

|--------------------------------------------------------------------------

| 100.0% | 51,891.0 | 2,055.7 | 4.0% | LAMMPS_NS::PairLJCut::compute

||-------------------------------------------------------------------------

|| 100.0% | 51,891.0 | -- | -- | pe.32

|| 93.0% | 48,263.0 | -- | -- | pe.93

||=========================================================================

| 11.3% | 5,871.0 | 193.1 | 3.3% | LAMMPS_NS::Neighbor::half_bin_newton

||-------------------------------------------------------------------------

|| 11.3% | 5,871.0 | -- | -- | pe.66

|| 10.7% | 5,535.0 | -- | -- | pe.94

||=========================================================================

| 8.6% | 4,480.0 | 2,418.6 | 54.6% | MPI_Send

||-------------------------------------------------------------------------

|| 8.6% | 4,480.0 | -- | -- | pe.45

|| 0.9% | 443.0 | -- | -- | pe.32
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Recognizing OpenMP in a Report (CCE only)

● CrayPat can collect the most detail from OpenMP using the 
Cray compiler

● OpenMP regions and loops are identified in report with the 
following syntax:
● function.REGION@li.49

● function.LOOP@li.53

● OpenMP statistics are collected by default (no need to 
enable anything in the tools)
● Most information is available with Cray compiler
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How Do I See per-Rank or per-Thread Data?

● $ pat_report –s pe=ALL

● $ pat_report –s th=ALL
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Don’t See an Expected Function?

● To make the profile easier to interpret, samples are 

attributed to a caller that is either a user defined function, or 

a library function called directly by a user defined function

● To disable this adjustment, and show functions actually 
sampled, use the ‘pat_report –P’ option to disable 

pruning

● You should be able to see the caller/callee relationship with 
‘pat_report -P -O callers’
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Don’t See an Expected Function? (cont’d)

● Why don’t I see a particular function in the report?

● Cray tools filter out data that may distract you
● Use pat_report –T to see functions that didn’t take much time

● Still don’t see it?

● Check the compiler listing to see if the function was inlined
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What is ETC Group in the Report?

● When a function is called that cannot be attributed to a 

user-defined parent function, it gets placed in ETC

● Try ‘pat_report –P’

● Note: pat_report depends on the accuracy of the 

DWARF issued by the compiler
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Documentation Available

● Release Notes
● > module help perftools-base/version_number

● User manual “Using the Cray Performance Measurement 
and Analysis Tools” available at http://pubs.cray.com

● pat_help – interactive help utility on the Cray Performance 
toolset

● Man pages

http://pubs.cray.com/
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Tips for Analyzing 
Program Performance

Load perftools-lite

Build and run program

Interpret results
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Where Do I Start?

● Determine problem size / job size that you ultimately 

want to run

● Get high level program profile at scale to locate key 

bottlenecks

● Work from high-level (inter-node) to low-level (intra-

node) bottlenecks
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Helpful Experiments

● Identify slowest areas and notable bottlenecks of a program

● Use perftools-lite

● Good for examining performance characteristics of a program and for scaling analysis

● Focus on loop optimization, including adding OpenMP with Reveal (CCE only)

● Use perftools-lite-loops

● Use perftools-lite-hbm for memory bandwidth sensitivity study

● Focus on MPI communication 

● Use perftools-lite first to determine if MPI time is dominant or if there is a load imbalance 

between ranks

● Use perftools (pat_build –g mpi) to collect more detailed MPI-specific information

● Good for scaling analysis at targeted final job size
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Focus on Loop Optimization – Find Top Loops

● $ module load PrgEnv-cray perftools-lite-loops

● Needs Cray compiler

● Build program (build from scratch – we add compiler flags)
● Should see message at end of build from CrayPat saying that it created an instrumented 

executable

● Remember to add –hlist=a to build with CCE listing

● Add –hpl=/path_to_program_library/my_program.pl if you want to use Reveal

● $ aprun –n … ./my_program

● Performance data sent to STDOUT and to experiment data directory with unique 
name
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Focus on MPI Communication 

● $ module load perftools

● Build program
● Remember to add –hlist=a to build with CCE listing

● Can relink or use “a.out+orig” if created with perftools-lite

● Instrument program
● $ pat_build –g mpi ./my_program

● Run application
● $ aprun/srun -n … my_program+pat

● Create report 
● $ pat_report my_programXXX/ > my_report
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Summary

● Cray performance tools offer functionality that reduces 

the time investment associated with porting and tuning 

applications on new and existing Cray systems

● Cray performance tools come with a simple interface 

plus a wealth of capability when you need it for 

analyzing those most critical production codes
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Thank You!

Questions?


