
Performance Profiling on KNL

with Cray perftools-lite
Peter Mendygral
pjm@cray.com

C O M P U T E | S T O R E | A N A L Y Z E
2

ALCF SDL Workshop 2018 Cray Inc. © 2018

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual
property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers
and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray
Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of
Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect
actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design,
SONEXION, URIKA and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER
CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks,
and trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense
from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Other names and brands may be claimed as the property of others. Other product and service names mentioned herein are the
trademarks of their respective owners.

Copyright 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
3

ALCF SDL Workshop 2018 Cray Inc. © 2018

Agenda

● Overview of Cray Performance Tools

● Identifying slowest areas of a program

● Tips for analyzing program performance

ALCF SDL Workshop 2018 Cray Inc. © 2018
4

Overview of Cray Performance Tools

Load modules to access software

Choose experiment to target your goal

Visualize application bottlenecks

ALCF SDL Workshop 2018 Cray Inc. © 2018
5

Goals

● Reduce the time investment associated with porting
and tuning applications on Cray systems

● Analyze whole-program behavior across many nodes
to identify critical performance bottlenecks within a
program

● Improve your profiling experience by using simple (lite
mode) and/or advanced interfaces for a wealth of
capability that targets analyzing large HPC jobs

ALCF SDL Workshop 2018 Cray Inc. © 2018
6

Functional Highlights

● Whole program performance analysis with
● Novice and advanced user interfaces

● Support for MPI, SHMEM, OpenMP, PGAS, OpenACC, CUDA

● Load imbalance detection

● HW counter metrics (hit rates, computational intensity, etc.)

● Observations on inefficiencies

● Data correlation to user source

● Minimal program perturbation

● Sampling, tracing with runtime summarization (RTS), full trace (timeline)
modes available

● Supports CCE, Intel and GCC compilers on Cray XC systems

● Supports CCE on Cray CS systems

ALCF SDL Workshop 2018 Cray Inc. © 2018
7

Components

● CrayPat and CrayPat-lite
● Identifies top time consuming routines, work load imbalance, MPI rank

placement strategies, etc.

● PAPI
● Performance counters (used by CrayPat or directly by user)

● Cray Apprentice2
● Visualize load imbalance, excessive communication, network contention,

excessive serialization

● Reveal
● View CCE optimization messages, key loops in program, high bandwidth

memory traffic, add OpenMP to program

ALCF SDL Workshop 2018 Cray Inc. © 2018
8

Cray Performance Tools Status

● perftools-base/7.0.0 released in Dec 2017

● What’s new?

● Perftools-lite performance improvements (execution, scaling)

● Performance data experiment directory

● Memory and vector sensitivity metrics

ALCF SDL Workshop 2018 Cray Inc. © 2018
9

How to Access Cray Performance Tools

perftools-base module

● Provides access to performance tools instrumentation modules,
documentation, Reveal and Apprentice2

● Doesn’t impact program build

● If not loaded by default on a system, you can load in your .profile
or .login and leave it loaded

● Once loaded, do a ‘module avail perftools’ to see available
instrumentation modules

ALCF SDL Workshop 2018 Cray Inc. © 2018
10

Program Instrumentation Modules

● Instrumentation modules prepare an application for performance data
collection

> module avail perftools

--------- /opt/cray/pe/perftools/7.0.0/modulefiles ---------

perftools

perftools-lite

perftools-lite-events

perftools-lite-gpu

perftools-lite-hbm

perftools-lite-loops

perftools-nwpc

Use first to get basic

program

performance profile

ALCF SDL Workshop 2018 Cray Inc. © 2018
11

Interfaces Available

● CrayPat-lite: simple interface for convenience

● CrayPat: advanced interface for in-depth performance

investigation and tuning assistance as well as data

collection control

● Both offer:
● Whole program analysis across many nodes

● Indication of causes of problems

● Ability to easily switch between the two interfaces

ALCF SDL Workshop 2018 Cray Inc. © 2018
12

Simple vs Advanced Interface

● Has fewer steps

● Is easier to use if you rarely profile applications (don’t have to
remember how to use the tools)

● Provides a condensed text report

● Performs performance data processing and report generation at
end of job on compute nodes

● Allows you to mix with advanced interface
● Run pat_report to get full report with simple interface

ALCF SDL Workshop 2018 Cray Inc. © 2018
13

Identifying Slowest Areas
of a Program

Load perftools-lite

Build and run program

Interpret results

ALCF SDL Workshop 2018 Cray Inc. © 2018
14

Example: Using perftools-lite

● $ module load perftools-lite

● Build program
● Should see message at end of build from CrayPat saying that it

created an instrumented executable
● Add –hlist=a to build with CCE listing for optimization feedback

● $ aprun/srun –n … ./my_program

● Performance data sent to STDOUT and to directory with
unique name
● Refer to CCE listing with sampling by line data in Table 2

ALCF SDL Workshop 2018 Cray Inc. © 2018
15

29. b-------< do i3=2,n3-1

30. b b-----< do i2=2,n2-1

31. b b Vr--< do i1=1,n1

32. b b Vr u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)

33. b b Vr * + u(i1,i2,i3-1) + u(i1,i2,i3+1)

34. b b Vr u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)

35. b b Vr * + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)

36. b b Vr--> enddo

37. b b Vr--< do i1=2,n1-1

38. b b Vr r(i1,i2,i3) = v(i1,i2,i3)

39. b b Vr * - a(0) * u(i1,i2,i3)

40. b b Vr * - a(2) * (u2(i1) + u1(i1-1) + u1(i1+1))

41. b b Vr * - a(3) * (u2(i1-1) + u2(i1+1))

42. b b Vr--> enddo

43. b b-----> enddo

44. b-------> enddo

Example: Cray loopmark Messages

cc/ftn/CC –hlist=a …

Inner-loops were vectorized and

unrolled (Vr)

Outer loops were blocked (b)

ALCF SDL Workshop 2018 Cray Inc. © 2018
16

ftn-6289 ftn: VECTOR File = resid.f, Line = 29

A loop starting at line 29 was not vectorized because a recurrence was found on "U1" between lines

32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 29

A loop starting at line 29 was blocked with block size 4.

ftn-6289 ftn: VECTOR File = resid.f, Line = 30

A loop starting at line 30 was not vectorized because a recurrence was found on "U1" between lines

32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 30

A loop starting at line 30 was blocked with block size 4.

ftn-6005 ftn: SCALAR File = resid.f, Line = 31

A loop starting at line 31 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 31

A loop starting at line 31 was vectorized.

ftn-6005 ftn: SCALAR File = resid.f, Line = 37

A loop starting at line 37 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 37

A loop starting at line 37 was vectorized.

Example: Cray loopmark Messages (cont)

ALCF SDL Workshop 2018 Cray Inc. © 2018
17

Example of Explain Utility

users/ldr> explain ftn-6289

VECTOR: A loop starting at line %s was not vectorized because a recurrence

was found on "var" between lines num and num.

Scalar code was generated for the loop because it contains a linear

recurrence. The following loop would cause this message to be issued:

DO I = 2,100

B(I) = A(I-1)

A(I) = B(I)

ENDDO

ALCF SDL Workshop 2018 Cray Inc. © 2018
18

Example: perftools-lite Job Summary

###

#

CrayPat-lite Performance Statistics

#

###

CrayPat/X: Version 7.0.0.45 Revision 11f412d 11/08/17 09:36:36

Experiment: lite lite/sample_profile

Number of PEs (MPI ranks): 96

Numbers of PEs per Node: 16 PEs on each of 6 Nodes

Numbers of Threads per PE: 1

Number of Cores per Socket: 68

Execution start time: Tue Nov 14 11:44:06 2017

System name and speed: nid00037 1401 MHz (approx)

Intel Knights Landing CPU Family: 6 Model: 87 Stepping: 1

MCDRAM: 7.2 GHz, 16 GiB available as quad, cache (100% cache)

Avg Process Time: 612.10 secs

High Memory: 16,053.7 MBytes 167.2 MBytes per PE

I/O Read Rate: 1.764988 MBytes/sec

I/O Write Rate: 4.349897 MBytes/sec

ALCF SDL Workshop 2018 Cray Inc. © 2018
19

Example: perftools-lite Top Time Consumers

Table 1: Profile by Function Group and Function (top 10 functions shown)

Samp% | Samp | Imb. | Imb. |Group

| | Samp | Samp% | Function

| | | | PE=HIDE

100.0% | 55,605.7 | -- | -- |Total

|---

| 56.5% | 31,412.8 | -- | -- |USER

||--

|| 19.7% | 10,944.1 | 290.9 | 2.6% |create_boundary$boundary_

|| 10.7% | 5,937.8 | 214.2 | 3.5% |get_block$blocks_

|| 3.9% | 2,194.4 | 7.6 | 0.3% |create_distrb_balanced$distribution_

|| 2.0% | 1,135.5 | 137.5 | 10.8% |impvmixt$vertical_mix_

|| 1.9% | 1,064.8 | 124.2 | 10.5% |impvmixt_correct$vertical_mix_

||==

| 22.5% | 12,513.4 | -- | -- |ETC

||--

|| 20.1% | 11,151.4 | 2,758.6 | 19.9% |__cray_memcpy_KNL

||==

| 20.7% | 11,503.5 | -- | -- |MPI

||--

|| 11.1% | 6,171.6 | 1,785.4 | 22.5% |MPI_ALLREDUCE

|| 7.9% | 4,377.8 | 3,254.2 | 42.7% |mpi_waitall

ALCF SDL Workshop 2018 Cray Inc. © 2018
20

Example: perftools-lite Observations
MPI Grid Detection:

There appears to be point-to-point MPI communication in a 32 X 32

grid pattern. The 20.7% of the total execution time spent in MPI

functions might be reduced with a rank order that maximizes

communication between ranks on the same node. The effect of several

rank orders is estimated below.

A file named MPICH_RANK_ORDER.Grid was generated along with this

report and contains usage instructions and the Hilbert rank order

from the following table.

Rank Order On-Node On-Node MPICH_RANK_REORDER_METHOD

Bytes/PE Bytes/PE%

of Total

Bytes/PE

Hilbert 1.413e+12 81.94% 3

SMP 1.053e+12 61.04% 1

Fold 9.405e+11 54.53% 2

RoundRobin 8.962e+11 51.96% 0

ALCF SDL Workshop 2018 Cray Inc. © 2018
21

Example: perftools-lite Hot Spots by Line

Table 3: Profile by Group, Function, and Line

Samp% | Samp | Imb. | Imb. | Group

| | Samp | Samp% | Function

| | | | Source

| | | | Line

| | | | PE=HIDE

100.0% | 60,665.8 | -- | -- | Total

|---

| 94.6% | 57,390.6 | -- | -- | USER

||--

|| 82.1% | 49,835.3 | -- | -- | LAMMPS_NS::PairLJCut::compute

|||---

3|| 80.7% | 48,970.1 | -- | -- | src/Obj_xc30intel/../pair_lj_cut.cpp

||||--

4||| 3.9% | 2,359.8 | 100.2 | 4.1% | line.102

4||| 1.0% | 596.2 | 61.8 | 9.5% | line.105

4||| 8.3% | 5,022.4 | 683.6 | 12.1% | line.107

4||| 2.9% | 1,744.2 | 966.8 | 36.0% | line.108

ALCF SDL Workshop 2018 Cray Inc. © 2018
22

Get Additional Information Without Re-running

● Run pat_report after collecting data with lite mode

● pat_report my_programXXXs/ > full_rpt

● pat_report –O callers or pat_report –O callers+src

● pat_report –O calltree or pat_report –O calltree+src

● Check out load balance table

● Learn about related tables in “Table Notes”

● We try to suggest reports that dive deeper on a related topic

● Provide data aggregation method

ALCF SDL Workshop 2018 Cray Inc. © 2018
23

Example: Load Balance by Max Time

Table 2: Profile of maximum function times (limited entries shown)

Samp% | Samp | Imb. | Imb. | Function

| | Samp | Samp% | PE=[max,min]

|--

| 100.0% | 51,891.0 | 2,055.7 | 4.0% | LAMMPS_NS::PairLJCut::compute

||---

|| 100.0% | 51,891.0 | -- | -- | pe.32

|| 93.0% | 48,263.0 | -- | -- | pe.93

||===

| 11.3% | 5,871.0 | 193.1 | 3.3% | LAMMPS_NS::Neighbor::half_bin_newton

||---

|| 11.3% | 5,871.0 | -- | -- | pe.66

|| 10.7% | 5,535.0 | -- | -- | pe.94

||===

| 8.6% | 4,480.0 | 2,418.6 | 54.6% | MPI_Send

||---

|| 8.6% | 4,480.0 | -- | -- | pe.45

|| 0.9% | 443.0 | -- | -- | pe.32

ALCF SDL Workshop 2018 Cray Inc. © 2018
24

Recognizing OpenMP in a Report (CCE only)

● CrayPat can collect the most detail from OpenMP using the
Cray compiler

● OpenMP regions and loops are identified in report with the
following syntax:
● function.REGION@li.49

● function.LOOP@li.53

● OpenMP statistics are collected by default (no need to
enable anything in the tools)
● Most information is available with Cray compiler

ALCF SDL Workshop 2018 Cray Inc. © 2018
25

How Do I See per-Rank or per-Thread Data?

● $ pat_report –s pe=ALL

● $ pat_report –s th=ALL

ALCF SDL Workshop 2018 Cray Inc. © 2018
26

Don’t See an Expected Function?

● To make the profile easier to interpret, samples are

attributed to a caller that is either a user defined function, or

a library function called directly by a user defined function

● To disable this adjustment, and show functions actually
sampled, use the ‘pat_report –P’ option to disable

pruning

● You should be able to see the caller/callee relationship with
‘pat_report -P -O callers’

ALCF SDL Workshop 2018 Cray Inc. © 2018
27

Don’t See an Expected Function? (cont’d)

● Why don’t I see a particular function in the report?

● Cray tools filter out data that may distract you
● Use pat_report –T to see functions that didn’t take much time

● Still don’t see it?

● Check the compiler listing to see if the function was inlined

ALCF SDL Workshop 2018 Cray Inc. © 2018
28

What is ETC Group in the Report?

● When a function is called that cannot be attributed to a

user-defined parent function, it gets placed in ETC

● Try ‘pat_report –P’

● Note: pat_report depends on the accuracy of the

DWARF issued by the compiler

ALCF SDL Workshop 2018 Cray Inc. © 2018
29

Documentation Available

● Release Notes
● > module help perftools-base/version_number

● User manual “Using the Cray Performance Measurement
and Analysis Tools” available at http://pubs.cray.com

● pat_help – interactive help utility on the Cray Performance
toolset

● Man pages

http://pubs.cray.com/

ALCF SDL Workshop 2018 Cray Inc. © 2018
30

Tips for Analyzing
Program Performance

Load perftools-lite

Build and run program

Interpret results

ALCF SDL Workshop 2018 Cray Inc. © 2018
31

Where Do I Start?

● Determine problem size / job size that you ultimately

want to run

● Get high level program profile at scale to locate key

bottlenecks

● Work from high-level (inter-node) to low-level (intra-

node) bottlenecks

ALCF SDL Workshop 2018 Cray Inc. © 2018
32

Helpful Experiments

● Identify slowest areas and notable bottlenecks of a program

● Use perftools-lite

● Good for examining performance characteristics of a program and for scaling analysis

● Focus on loop optimization, including adding OpenMP with Reveal (CCE only)

● Use perftools-lite-loops

● Use perftools-lite-hbm for memory bandwidth sensitivity study

● Focus on MPI communication

● Use perftools-lite first to determine if MPI time is dominant or if there is a load imbalance

between ranks

● Use perftools (pat_build –g mpi) to collect more detailed MPI-specific information

● Good for scaling analysis at targeted final job size

ALCF SDL Workshop 2018 Cray Inc. © 2018
33

Focus on Loop Optimization – Find Top Loops

● $ module load PrgEnv-cray perftools-lite-loops

● Needs Cray compiler

● Build program (build from scratch – we add compiler flags)
● Should see message at end of build from CrayPat saying that it created an instrumented

executable

● Remember to add –hlist=a to build with CCE listing

● Add –hpl=/path_to_program_library/my_program.pl if you want to use Reveal

● $ aprun –n … ./my_program

● Performance data sent to STDOUT and to experiment data directory with unique
name

ALCF SDL Workshop 2018 Cray Inc. © 2018
34

Focus on MPI Communication

● $ module load perftools

● Build program
● Remember to add –hlist=a to build with CCE listing

● Can relink or use “a.out+orig” if created with perftools-lite

● Instrument program
● $ pat_build –g mpi ./my_program

● Run application
● $ aprun/srun -n … my_program+pat

● Create report
● $ pat_report my_programXXX/ > my_report

C O M P U T E | S T O R E | A N A L Y Z E
35

ALCF SDL Workshop 2018 Cray Inc. © 2018

Summary

● Cray performance tools offer functionality that reduces

the time investment associated with porting and tuning

applications on new and existing Cray systems

● Cray performance tools come with a simple interface

plus a wealth of capability when you need it for

analyzing those most critical production codes

C O M P U T E | S T O R E | A N A L Y Z E
36

ALCF SDL Workshop 2018 Cray Inc. © 2018

Thank You!

Questions?

