Performance Optimization I: Single Core/Node Vectorization,
Memory - Overview and BG/Q

Scott Parker, Hal Finkel
Leadership Computing Facility

ALCF Computational Performance Workshop — May 15, 2018

What programs do...

<

AN

AN

AN

O 1y - I -
000" T iy iy

' Ty
[R

0 Uy ey gy 32
- L]

Read data from memory

Compute using that data
Write results back to memory

Communicate with other nodes and the outside world

nnnnnnnnnnnnnnnnnn

How fast can you go...

The speed at which you can compute is bounded by:

(the clock rate of the cores) x (the amount of parallelism you can exploit)

: k.

AAAAAAAAAAAAAAAAAA

There is only one socket

) .y 1) oy “gag -)
‘\,)H oy iy ea ¥ : Y O

] - Z
iy oty oy s o' HE T T2

iy oy g ¢ H HHHEE oy
f.} T 2 i 1 i HHHHHENUT "“0

Image source: https://computing.linl.gov/tutorials/linux_clusters/

Argonne &

There

A BG/Q Node has:
. 1 PowerPC A2Q CPU
. 16 GB DDR3 DRAM

Argonne &

Image source: https://computing.linl.gov/tutorials/linux_clusters/

There are 16 cores per node

Controller

Mel:TI\

Network

1dDpue Q188

Shared 'L3-“C-_-ach. :

m._o:_w,.m:m ananhas

)

'----Shared :3-Cache!

Image source: https://computing.linl.gov/tutorials/linux_cluster

NATIONAL LABORATORY

Argonne &

There are 16 cores per node

Memory Controller

a-4
e

Image source: https://computing.linl.gov/tutorials/linux_clusters/:

NATIONAL LABORATORY

Argonne &

There are two pipelines

56-entry Instruction Decode Queue

192-entry Reorder Buffer

Address

@

T

@

Argonne &

NATIONAL LABORATORY

There are two pipelines per core

56-entry Instruction Decode Queue

192-entry Reorder Buffer

PowerPC A2 Core:

4treads

60-entry Unified Reservation Station m m

Port 0 Port 1 Port 2 Port 3 Port4 Port 5 Port 6 Port 7

ucode

Intstruction Unit (IU)

FMA FMul
256b FP — OPRS ERA J3d Compietio

} ALY \ eX2 [» ex3 | exd [> ex5 [M ex o il |
veclo Ds
Logicals
Tol2

Branch, Fixed Point, Load/Store (XU)

_L:[m—'-qex1|—i|ex2|—-|ex3|—-|ex4|—rlex5|—b|exsp—ui i1 |
cn‘

Floating Point (FU)

Argonne &

NATIONAL LABORATORY

There are four hardware threads per core

e

ntstruction Unit (1U)

111 [ext [ex ol exa ol exa o exs ol s o 71

Branch, Fixed Point, Load/Store (XU)

2] wea) ned) nes)
You must have at least two threads (or processes) -) -
per core to efficiently use the BG/Q! Floating Point (FU)

Vectorization: The Quad-Processing eXtension (QPX)

. On the BG/Q, only QPX vector instructions are supported!

» Only <4 x double>, <4 x float> and <4 x bool> operations are provided.

.~ The only advantage of single precision over double precision is decreased memory bandwidth/footprint.

256 d:

Load

RF

RF

MAD1

~]
I

MAD2

a1

MAD3

AAAAAAAAAAAAAAAAAA

SIMD: What does it mean?

Scalar SIMD

1

1

X1 *Y1

*

https://software.intel.com/en-us/articles/ticker-tape-part-2

Argonne &

Fused Multiply Add Instructions (FMA)

There are some FP (vector) instructions that combine both a multiply and an add/subtract into one instruction!

Many variants like these:

And a few like these with built-in permutations:

AAAAAAAAAAAAAAAAAA

Putting it all together...

. 4

Peak FLOPS: (1.6 GHz) x (16 cores) x (4 vector lanes) x (2 operations per FMA) = 204.8 GFLOPS/node.

3
e
e)
2
Q
Z

NATIONAL LABORATORY

Argonne &

Types of parallelism

Parallelism across nodes (using MPI, etc.)
Parallelism across sockets within a node [Not applicable to the BG/Q, KNL, etc.]

Parallelism across cores within each socket
Parallelism across pipelines within each core (i.e. instruction-level parallelism) o
Parallelism across vector lanes within each pipeline (i.e. SIMD) O

Using instructions that perform multiple operations simultaneously (e.g. FMA) ‘

Argonne &

Computer Architecture

Traditional computers are built to:

. Move data

. Make decisions

« Compute polynomials (of relatively-low order)

f(x) =aog + ar1x + aox® + asx’ + aux

4

AAAAAAAAAAAAAAAAAA

Computer ArChit@CTUIe w s or s ancums vor 5105 ocromn 10

$ cat /tmp/f1.c A B c
double foo(double a0, ..., double x) { i (Jivxg
return a0 + x*(a1 + x*(a2 + x*(a3 + a4*x)))
} / ey /it iignment |
t0 = fma(a4, x, a3) =
o | A
t1 = fma(to, x, a2) B -
t2 = fma(t1, x, a1)
t3 = fma(t2, x, a0)

return t3

Argonne &

Computer Architecture

But this is not good...

t0 = fma(a4, x, a3)

Waitina. . A lot of computer architecture revolves around this question:

Waiting... === How do we put useful work here?

Waiting...
Waiting...
Waiting...
t1 = fma(t0, x, a2)

t2 = fma(t1, x, a1)
t3 = fma(t2, x, a0)

.r.e-turn t3

AAAAAAAAAAAAAAAAAA

Hardware Threads

One way is to use hardware threads...

t0 = fma(a4, x, a3) [thread O]
t0 = fma(a4, x, a3) [thread 1]
t0 = fma(a4, x, a3) [thread 2]
t0 = fma(a4, x, a3) [thread 3]
t0 = fma(a4, x, a3) [thread 4]
t0 = fma(a4, x, a3) [thread 5]
t1 = fma(t0, x, a2)

t2 = fma(t1, x, a1)
How many threads do we need?
t3 = fma(t2, x, a0) How much latency do we need to hide?

return t3
Argonne &

Loop Unrolling

CPUs have a fixed register file per thread, and the compiler can use that to hide latency...

for (inti=0;i<n;i+=2){

for (int i = 0; i < n; ++i) { " = Inotiie1]°
X = Input[i] t0 = fma(a4, x, a3)
t0 = fma(a4, x, a3) uo = fma(a4, y, a3)
t1 = fma(to, x, a2) 1 = mauo, v)
t2 = fma(t1, x, a1) t22= f][na(z1,1x, 813)
- uz=Tma(ul, vy, a
t3 = fmg(t2, X, aO) t3 = fma(t2, x,)/aO)
Output[i] = 13 u3 = fma(u2, y, a0)

) Output[i] = t3
}

If you need to tune this yourself, most compilers have a #pragma unroll' feature. Argonne &

CPU Registers

You can't unroll enough to completely hide anything but “on core” latencies (e.g. L1 cache hits and
from FP pipeline) — you just don't have enough registers!

. X86 64 has 16 general-purpose registers (GPRs) — for scalar
integer data, pointers, etc. — and 16 floating-point/vector registers

« With AVX-512 (e.g. with Knights Landing) there are 32 floating-
point/vector registers

. AVX-512 also adds 8 operation mask registers

« PowerPC has 32 GPRs, 32 scalar floating-point registers and 32
vector registers (modern cores with VSX effectively combine these
into 64 floating-point/vector registers)

AAAAAAAAAAAAAAAAAA

Compiling

When compiling your programs, please use our MP| wrappers (these are the softenv keys)...

(generally best performance)

v

v

<

<

<

<

+mpiwrapper-xl.legacy

o)

+mpiwrapper-bgclang.legacy

+mpiwrapper-xI

‘®
+mpiwrapper-bgclang
+mpiwrapper-gcc.legacy

+mpiwrapper-gcc

(generally worst performance)

AAAAAAAAAAAAAAAAAA

Compiling
Basic optimization flags...

» -03 — Generally aggressive optimizations (try this first: it is typically the best tested of all compiler
optimization levels)

» -g —Always include debugging symbols (really, always! - when your run crashes at scale after
running for hours, you want the core file to be useful)

+ -gsmp=omp (xl) -fopenmp (bgclang and gcc) — Enable OpenMP (the pragmas will be ignored without
this)

~ -gnostrict (xl) -ffast-math (bgclang and gcc) — Enable “fast” math optimizations (most people don't
need strict IEEE floating-point semantics). xI enables this by default at -O3 and above and you need

to pass -gstrict to turn it off.

AAAAAAAAAAAAAAAAAA

MKL, cuBLAS, ESSL, etc.

Vendors provide optimized math libraries for each system (BLAS for linear
algebra, FFTs, and more).

+ MKL on Intel systems, ESSL on IBM systems, cuBLAS (and others) for
NVIDIA GPUs
. For FFTs, there is often an optional FFTW-compatible interface.

AAAAAAAAAAAAAAAAAA

ESSL

IBM provides ESSL.: A library of optimized math functions (BLAS for linear algebra, FFTs, and more).
For FFTs, there is an optional FFTW-compatible interface.

. ESSL is installed in /soft/libraries/essl/current
»You can choose either -lesslbg or -lesslsmpbg (the 'smp' version uses OpenMP internally to take

advantage of multiple threads)

Argonne &

Memory partitioning

Using threads vs. multiple MPI ranks per node: it's about...

. Memory
. Sending data between ranks on the same node often involves “unnecessary” copying (unless
using MPI-3 shared memory windows)
. Similarly, your application may need to manage “unnecessary” ghost regions
. MPI (and underlying components) have data structures that grow linearly (at best) with the total
number of ranks
» And Memory
. When threads can work together they can share resources instead of competing (cache,
memory bandwidth, etc.)
. Each process only gets a modest amount of memory per core
+ And parallelism
. You'll likely see the best overall results from the scheme that exposes the most parallelism

AAAAAAAAAAAAAAAAAA

Some final advice...

Don't guess! Profile!

Your performance bottlenecks on the BG/Q might be very
different from those on other systems.

uuuuuuuuuuuuuuuuuu

