
Performance Optimization I: Single Core/Node Vectorization, 
Memory - Overview and BG/Q

erhtjhtyhy

Scott Parker, Hal Finkel
Leadership Computing Facility

ALCF Computational Performance Workshop – May 15, 2018



What programs do...

ü Read data from memory

ü Compute using that data

ü Write results back to memory

ü Communicate with other nodes and the outside world



How fast can you go...
The speed at which you can compute is bounded by:

(the clock rate of the cores) x (the amount of parallelism you can exploit)

BG/Q: Fixed 1.6 GHz
KNL: 1.30 GHz

(dynamically scaled)

Kepler: 0.8 GHZ
Pascal: 1.30 GHz

Your hard work goes here...



There is only one socket

Image source: https://computing.llnl.gov/tutorials/linux_clusters/

Not a BG/Q node

Commodity HPC node with four sockets

Has nonuniform memory access (NUMA):
each core has DRAM to which it is closer

(running multiple MPI ranks per node, one per socket, is probably best)



There is only one socket

Image source: https://computing.llnl.gov/tutorials/linux_clusters/

A BG/Q node

A BG/Q node has only one “socket” with one CPU

All memory is equally close:
No NUMA

(running one MPI rank per node works well)

A BG/Q Node has:
ü 1 PowerPC A2Q CPU
ü 16 GB DDR3 DRAM



There are 16 cores per node

Commodity HPC CPUs typically
have only 4 – 24 cores

(and the operating system does not
have a dedicated core)

Not a BG/Q core

Image source: https://computing.llnl.gov/tutorials/linux_clusters/



There are 16 cores per node

Image source: https://computing.llnl.gov/tutorials/linux_clusters/

Each BG/Q CPU has 16 cores you can use

The cores are connected by a
cross-bar interconnect

with an aggregate read bandwidth
of 409.6 GB/s

(write bandwidth is half that)

CNK, the lightweight operating system, runs on the 17th core!



There are two pipelines per core

Not a BG/Q core

PowerPC A2 Core:In commodity HPC cores, instructions are
dispatched to many pipelines after

dynamic rearrangement (out of order).

Probably executes x86-64 (Intel/AMD)
instructions (including some set

of vector extensions).

Multiple choices for
some instruction types.



There are two pipelines per core
PowerPC A2 Core:

Only one choice for
any instruction

Executes PowerPC instructions
(complying with the
POWER ISA v2.06)

plus QPX vector instructions

On the BG/Q, instruction dispatch feeds
only two pipelines in order



There are four hardware threads per core

Instructions from the four hardware threads
are dispatched round-robin

The four threads share essentially
all resources (except the register file)

The two pipelines can simultaneously start
two instructions, but they must come from

two different threads

You must have at least two threads (or processes)
per core to efficiently use the BG/Q!



Vectorization: The Quad-Processing eXtension (QPX)

On commodity HPC
hardware, integer

operations can also be
vectorized, but not on

the BG/Q.

ü On the BG/Q, only QPX vector instructions are supported!

ü Only <4 x double>, <4 x float> and <4 x bool> operations are provided.

ü The only advantage of single precision over double precision is decreased memory bandwidth/footprint.



SIMD: What does it mean?

Autovectorization (or manual vectorization)

https://software.intel.com/en-us/articles/ticker-tape-part-2



Fused Multiply Add Instructions (FMA)
There are some FP (vector) instructions that combine both a multiply and an add/subtract into one instruction!

Many variants like these:

And a few like these with built-in permutations:

qvfmadd:
QRT0 ← [(QRA0)×(QRC0)] + (QRB0) 
QRT1 ← [(QRA1)×(QRC1)] + (QRB1) 
QRT2 ← [(QRA2)×(QRC2)] + (QRB2) 
QRT3 ← [(QRA3)×(QRC3)] + (QRB3) 

qvfmsub:
QRT0 ← [(QRA0)×(QRC0)] - (QRB0)
QRT1 ← [(QRA1)×(QRC1)] - (QRB1)
QRT2 ← [(QRA2)×(QRC2)] - (QRB2)
QRT3 ← [(QRA3)×(QRC3)] - (QRB3)

qvfxxnpmadd:
QRT0 ← - ([(QRA1)×(QRC1)] - (QRB0) )
QRT1 ←    [(QRA0)×(QRC1)] + (QRB1)
QRT2 ← - ([(QRA3)×(QRC3)] - (QRB2) )
QRT3 ←    [(QRA2)×(QRC3)] + (QRB3)

qvfxmadd:
QRT0 ← [(QRA0)×(QRC0)] + (QRB0)
QRT1 ← [(QRA0)×(QRC1)] + (QRB1)
QRT2 ← [(QRA2)×(QRC2)] + (QRB2)
QRT3 ← [(QRA2)×(QRC3)] + (QRB3)



Peak FLOPS: (1.6 GHz) x (16 cores) x (4 vector lanes) x (2 operations per FMA) = 204.8 GFLOPS/node.

Putting it all together...

You can only achieve the peak FLOP
rate using FMAs

(usually true on commodity hardware too) 

You must vectorize to achieve
The peak FLOP rate

(on future machines, this factor
will be even larger)

Note: this is an order of magnitude
(on future machines, it will be nearly

two orders of magnitude)

Remember you must use at least two
hardware threads (or processes)

or else you won't be able to
saturate the floating-point pipeline

in practice



Memory

DDR3 DRAM
(~30 GB/s 2 controllers)

Commodity HPC cores
often also have an
L3 cache; we don't.

However, they have an L2
cache that is only
hundreds of KB.

L2 cache
(16 slices)

16 MB in total

L1 cache and L1P internal buffer
(per core)



Types of parallelism
ü Parallelism across nodes (using MPI, etc.)
ü Parallelism across sockets within a node [Not applicable to the BG/Q, KNL, etc.]
ü Parallelism across cores within each socket
ü Parallelism across pipelines within each core (i.e. instruction-level parallelism)
ü Parallelism across vector lanes within each pipeline (i.e. SIMD)
ü Using instructions that perform multiple operations simultaneously (e.g. FMA)

Hardware threads
tie in here too!



Computer Architecture
Traditional computers are built to:
l Move data
l Make decisions
l Compute polynomials (of relatively-low order)



Computer Architecture
$ cat /tmp/f1.c 
double foo(double a0, ..., double x) {

return a0 + x*(a1 + x*(a2 + x*(a3 + a4*x)));
}
t0 = fma(a4, x, a3)
t1 = fma(t0, x, a2)
t2 = fma(t1, x, a1)
t3 = fma(t2, x, a0)
return t3

But floating-point is complicated,
so each operation cannot be completed

in one clock cycle. ~6 clock
cycles are needed.



Computer Architecture

t0 = fma(a4, x, a3)
Waiting…
Waiting…
Waiting…
Waiting…
Waiting...
t1 = fma(t0, x, a2)
...
t2 = fma(t1, x, a1)
...
t3 = fma(t2, x, a0)
…
return t3

But this is not good…

A lot of computer architecture revolves around this question:

How do we put useful work here?



Hardware Threads

t0 = fma(a4, x, a3) [thread 0]
t0 = fma(a4, x, a3) [thread 1]
t0 = fma(a4, x, a3) [thread 2]
t0 = fma(a4, x, a3) [thread 3]
t0 = fma(a4, x, a3) [thread 4]
t0 = fma(a4, x, a3) [thread 5]
t1 = fma(t0, x, a2)
...
t2 = fma(t1, x, a1)
...
t3 = fma(t2, x, a0)
…
return t3

One way is to use hardware threads...

These can be OpenMP threads, pthreads,
or, on a CPU, different processes.

How many threads do we need?
How much latency do we need to hide?



Loop Unrolling
CPUs have a fixed register file per thread, and the compiler can use that to hide latency...

for (int i = 0; i < n; ++i) {
x = Input[i]
t0 = fma(a4, x, a3)
t1 = fma(t0, x, a2)
t2 = fma(t1, x, a1)
t3 = fma(t2, x, a0)
Output[i] = t3

}

for (int i = 0; i < n; i += 2) {
x = Input[i]
y = Input[i+1]
t0 = fma(a4, x, a3)
u0 = fma(a4, y, a3)
t1 = fma(t0, x, a2)
u1 = fma(u0, y, a2)
t2 = fma(t1, x, a1)
u2 = fma(u1, y, a1)
t3 = fma(t2, x, a0)
u3 = fma(u2, y, a0)
Output[i] = t3
Output[i+1] = u3

}

If you need to tune this yourself, most compilers have a '#pragma unroll' feature.

unroll by 2

Showing unroll by 2 so it fits on the slide,
you need to unroll by more to fully

hide FP or L1 latency

I hope these are in cache

Each pair is independent,
so no waiting in between

dispatches



CPU Registers
You can't unroll enough to completely hide anything but “on core” latencies (e.g. L1 cache hits and 
from FP pipeline) – you just don't have enough registers!

l x86_64 has 16 general-purpose registers (GPRs) – for scalar 
integer data, pointers, etc. – and 16 floating-point/vector registers

l With AVX-512 (e.g. with Knights Landing) there are 32 floating-
point/vector registers

l AVX-512 also adds 8 operation mask registers
l PowerPC has 32 GPRs, 32 scalar floating-point registers and 32 

vector registers (modern cores with VSX effectively combine these 
into 64 floating-point/vector registers)



Compiling
When compiling your programs, please use our MPI wrappers (these are the softenv keys)...

ü +mpiwrapper-xl.legacy

ü +mpiwrapper-xl

ü +mpiwrapper-bgclang.legacy

ü +mpiwrapper-bgclang

ü +mpiwrapper-gcc.legacy

ü +mpiwrapper-gcc

(generally best performance)

(generally worst performance)

The “legacy” MPI gives the best
performance unless you're using

MPI_THREAD_MULTIPLE

bgclang has better C++ support than
xl and gcc, but has no Fortran support (yet)



Compiling
Basic optimization flags...

ü -O3 – Generally aggressive optimizations (try this first: it is typically the best tested of all compiler 

optimization levels)
ü -g – Always include debugging symbols (really, always! - when your run crashes at scale after 

running for hours, you want the core file to be useful)
ü -qsmp=omp (xl) -fopenmp (bgclang and gcc) – Enable OpenMP (the pragmas will be ignored without 

this)
ü -qnostrict (xl) -ffast-math (bgclang and gcc) – Enable “fast” math optimizations (most people don't 

need strict IEEE floating-point semantics). xl enables this by default at -O3 and above and you need 
to pass -qstrict to turn it off.



MKL, cuBLAS, ESSL, etc.
Vendors provide optimized math libraries for each system (BLAS for linear 

algebra, FFTs, and more). 

ü MKL on Intel systems, ESSL on IBM systems, cuBLAS (and others) for 
NVIDIA GPUs

ü For FFTs, there is often an optional FFTW-compatible interface.



ESSL
IBM provides ESSL: A library of optimized math functions (BLAS for linear algebra, FFTs, and more). 

For FFTs, there is an optional FFTW-compatible interface.

ü ESSL is installed in /soft/libraries/essl/current
ü You can choose either -lesslbg or -lesslsmpbg (the 'smp' version uses OpenMP internally to take 

advantage of multiple threads)

ESSL is on IBM PowerPC systems
what MKL is on Intel systems.



Memory partitioning
Using threads vs. multiple MPI ranks per node: it's about...

ü Memory
ü Sending data between ranks on the same node often involves “unnecessary” copying (unless 

using MPI-3 shared memory windows)
ü Similarly, your application may need to manage “unnecessary” ghost regions
ü MPI (and underlying components) have data structures that grow linearly (at best) with the total 

number of ranks
ü And Memory

ü When threads can work together they can share resources instead of competing (cache, 
memory bandwidth, etc.)

ü Each process only gets a modest amount of memory per core
ü And parallelism

ü You'll likely see the best overall results from the scheme that exposes the most parallelism



Some final advice...
Don't guess! Profile! 

Your performance bottlenecks on the BG/Q might be very 
different from those on other systems.


