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What programs do...
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Read data from memory

Compute using that data
Write results back to memory

Communicate with other nodes and the outside world
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How fast can you go...

The speed at which you can compute is bounded by:

(the clock rate of the cores) x (the amount of parallelism you can exploit)
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There is only one socket
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Image source: https://computing.linl.gov/tutorials/linux_clusters/
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There

A BG/Q Node has:
. 1 PowerPC A2Q CPU
. 16 GB DDR3 DRAM
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Image source: https://computing.linl.gov/tutorials/linux_clusters/




There are 16 cores per node
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Image source: https://computing.linl.gov/tutorials/linux_cluster
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There are 16 cores per node

Memory Controller
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There are two pipelines

56-entry Instruction Decode Queue

192-entry Reorder Buffer
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There are two pipelines per core

56-entry Instruction Decode Queue

192-entry Reorder Buffer

PowerPC A2 Core:

4treads
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There are four hardware threads per core
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You must have at least two threads (or processes) - ) -
per core to efficiently use the BG/Q! Floating Point (FU)



Vectorization: The Quad-Processing eXtension (QPX)

. On the BG/Q, only QPX vector instructions are supported!

» Only <4 x double>, <4 x float> and <4 x bool> operations are provided.

.~ The only advantage of single precision over double precision is decreased memory bandwidth/footprint.
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SIMD: What does it mean?

Scalar SIMD

1

1

X1 *Y1

*

https://software.intel.com/en-us/articles/ticker-tape-part-2
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Fused Multiply Add Instructions (FMA)

There are some FP (vector) instructions that combine both a multiply and an add/subtract into one instruction!

Many variants like these:

And a few like these with built-in permutations:
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Putting it all together...

. 4

Peak FLOPS: (1.6 GHz) x (16 cores) x (4 vector lanes) x (2 operations per FMA) = 204.8 GFLOPS/node.
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Types of parallelism

Parallelism across nodes (using MPI, etc.)
Parallelism across sockets within a node [Not applicable to the BG/Q, KNL, etc.]

Parallelism across cores within each socket
Parallelism across pipelines within each core (i.e. instruction-level parallelism) o
Parallelism across vector lanes within each pipeline (i.e. SIMD) O

Using instructions that perform multiple operations simultaneously (e.g. FMA) ‘
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Computer Architecture

Traditional computers are built to:

. Move data

. Make decisions

« Compute polynomials (of relatively-low order)

f(x) =aog + ar1x + aox® + asx’ + aux
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Computer ArChit@CTUIe w s or s ancums vor 5105 ocromn 10

$ cat /tmp/f1.c A B c
double foo(double a0, ..., double x) { i (Jivxg
return a0 + x*(a1 + x*(a2 + x*(a3 + a4*x)))
} / ey /it iignment |
t0 = fma(a4, x, a3) =
o | A
t1 = fma(to, x, a2) B -
t2 = fma(t1, x, a1)
t3 = fma(t2, x, a0)

return t3
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Computer Architecture

But this is not good...

t0 = fma(a4, x, a3)

Waitina. . A lot of computer architecture revolves around this question:

Waiting... === How do we put useful work here?

Waiting...
Waiting...
Waiting...
t1 = fma(t0, x, a2)

t2 = fma(t1, x, a1)
t3 = fma(t2, x, a0)

.r.e-turn t3
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Hardware Threads

One way is to use hardware threads...

t0 = fma(a4, x, a3) [thread O]
t0 = fma(a4, x, a3) [thread 1]
t0 = fma(a4, x, a3) [thread 2]
t0 = fma(a4, x, a3) [thread 3]
t0 = fma(a4, x, a3) [thread 4]
t0 = fma(a4, x, a3) [thread 5]
t1 = fma(t0, x, a2)

t2 = fma(t1, x, a1)
How many threads do we need?
t3 = fma(t2, x, a0) How much latency do we need to hide?

return t3
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Loop Unrolling

CPUs have a fixed register file per thread, and the compiler can use that to hide latency...

for (inti=0;i<n;i+=2){

for (int i = 0; i < n; ++i) { " = Inotiie1]°
X = Input[i] t0 = fma(a4, x, a3)
t0 = fma(a4, x, a3) uo = fma(a4, y, a3)
t1 = fma(to, x, a2) 1 = mauo, v )
t2 = fma(t1, x, a1) t22= f][na(z1,1x, 813)
- uz=Tma(ul, vy, a
t3 = fmg(t2, X, aO) t3 = fma(t2, x,)/aO)
Output[i] = 13 u3 = fma(u2, y, a0)

) Output[i] = t3
}

If you need to tune this yourself, most compilers have a #pragma unroll' feature. Argonne &




CPU Registers

You can't unroll enough to completely hide anything but “on core” latencies (e.g. L1 cache hits and
from FP pipeline) — you just don't have enough registers!

. X86 64 has 16 general-purpose registers (GPRs) — for scalar
integer data, pointers, etc. — and 16 floating-point/vector registers

« With AVX-512 (e.g. with Knights Landing) there are 32 floating-
point/vector registers

. AVX-512 also adds 8 operation mask registers

« PowerPC has 32 GPRs, 32 scalar floating-point registers and 32
vector registers (modern cores with VSX effectively combine these
into 64 floating-point/vector registers)
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Compiling

When compiling your programs, please use our MP| wrappers (these are the softenv keys)...

(generally best performance)
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+mpiwrapper-xl.legacy

o)

+mpiwrapper-bgclang.legacy

+mpiwrapper-xI

‘®
+mpiwrapper-bgclang
+mpiwrapper-gcc.legacy

+mpiwrapper-gcc

(generally worst performance)
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Compiling
Basic optimization flags...

» -03 — Generally aggressive optimizations (try this first: it is typically the best tested of all compiler
optimization levels)

» -g —Always include debugging symbols (really, always! - when your run crashes at scale after
running for hours, you want the core file to be useful)

+ -gsmp=omp (xl) -fopenmp (bgclang and gcc) — Enable OpenMP (the pragmas will be ignored without
this)

~ -gnostrict (xl) -ffast-math (bgclang and gcc) — Enable “fast” math optimizations (most people don't
need strict IEEE floating-point semantics). xI enables this by default at -O3 and above and you need

to pass -gstrict to turn it off.
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MKL, cuBLAS, ESSL, etc.

Vendors provide optimized math libraries for each system (BLAS for linear
algebra, FFTs, and more).

+ MKL on Intel systems, ESSL on IBM systems, cuBLAS (and others) for
NVIDIA GPUs
. For FFTs, there is often an optional FFTW-compatible interface.
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ESSL

IBM provides ESSL.: A library of optimized math functions (BLAS for linear algebra, FFTs, and more).
For FFTs, there is an optional FFTW-compatible interface.

. ESSL is installed in /soft/libraries/essl/current
»You can choose either -lesslbg or -lesslsmpbg (the 'smp' version uses OpenMP internally to take

advantage of multiple threads)
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Memory partitioning

Using threads vs. multiple MPI ranks per node: it's about...

. Memory
. Sending data between ranks on the same node often involves “unnecessary” copying (unless
using MPI-3 shared memory windows)
. Similarly, your application may need to manage “unnecessary” ghost regions
. MPI (and underlying components) have data structures that grow linearly (at best) with the total
number of ranks
» And Memory
. When threads can work together they can share resources instead of competing (cache,
memory bandwidth, etc.)
. Each process only gets a modest amount of memory per core
+ And parallelism
. You'll likely see the best overall results from the scheme that exposes the most parallelism
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Some final advice...

Don't guess! Profile!

Your performance bottlenecks on the BG/Q might be very
different from those on other systems.
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