

Cray MPI for KNL
Gene Wagenbreth

Performance Engineer
gwagenbret@cray.com

 1

Cray MPI for KNL
Heidi Poxon

Sr. Principal Engineer
Cray Programming Environment

 2

Agenda

●  Introduction to Cray MPI
● Rank Re-Order
●  Load Balance
●  “Jitter”
● KNL Optimizations - Threading
● Specific KNL optimizations: DMAPP, MCDRAM
● Optimizations for Hybrid (MPI/OpenMP) applications

February 2017 Cray Inc. Proprietary © 2017
3

Introduction to Cray MPI
●  Fortran, C, C++
●  Integrated within the Cray Programming Environment

●  Compiler drivers manage compile flags and linking automatically
●  Profiling through Cray performance tools

●  I/O, collectives, P2P, and one-sided all optimized for Cray
system architecture
●  SMP-aware collectives
●  High performance single-copy on-node communication via xpmem

(not necessary to program for shared memory)
●  Highly tunable through environment variables

●  Defaults should generally be best, but some cases benefit from fine
tuning

February 2017 Cray Inc. Proprietary © 2017
4

Cray MPI Documentation

● Primary user resource for tuning and feature
documentation is the man page
●  man intro_mpi
OR
●  man MPI

● Standard function documentation available as well
●  E.g., man mpi_isend

February 2017 Cray Inc. Proprietary © 2017
5

MPICH_RANK_REORDER_METHOD

●  Keep transfer on node (grid nearest neighbor)
●  Vary your rank placement to optimize communication

●  Can be a quick, low-hassle way to improve performance

●  Use CrayPAT to produce a specific MPICH_RANK_ORDER file to
maximize intra-node communication

●  Or, use grid_order utility with your application's grid dimensions
to layout MPI ranks in alignment with data grid

●  To use:
●  name your custom rank order file: MPICH_RANK_ORDER
●  export MPICH_RANK_REORDER_METHOD=3

●  R09 (new) for off node reordering

February 2017 Cray Inc. Proprietary © 2017
6

Load Balance

● Very important with large MPI task counts

● Time shows up in MPI Barriers

● Grid refinement example
● Difficult to diagnose

● Difficult to fix
● CrayPat or other tools

February 2017 Cray Inc. Proprietary © 2017
7

OS Noise Plays a Role – How Big?
● Studied performance with and without corespec (-r 1)
● MPI Latency: Collectives, 1 rank per node

●  5.5X slower when not using corespec

● MPI Latency: Collectives, 2 to 68 ranks per node

●  4.7X slower when not using corespec
● MCDRAM direct mapped

February 2017 Cray Inc. Proprietary © 2017
8

With and Without Corespec

9

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ic

ro
se

co
nd

s

Number of Nodes

8-byte MPI_Allreduce Performance
With and without Corespec

68p/node - KNL

Boost+Corespec

P-State+Corespec

Boost-No Corespec

Up to 4.7X slower if
Corespec is not used (-r 1)

February 2017 Cray Inc. Proprietary © 2017

Latency studies on KNL with Cray MPI
● MPI is typically all scalar code

●  Lots of branches
●  Lots of small functions and function calls using pointers
●  With smaller Branch Target Buffer (BTB), KNL does not handle this type of

scalar code as well as the Xeon processor (even if you adjust Xeon to
slower KNL CPU frequency)

● Optimizing the “critical path”
●  Inline small functions
●  Use higher compiler optimization
●  Selective hand-tuning, which avoids taking branches in critical path
●  Disable FMA sharing when not needed
●  Use KNL-optimized memcpy

February 2017 Cray Inc. Proprietary © 2017
10

11

0

1

2

3

4

5

6

7

4 8 16 32 64 128 256 512 1024

M
ic

ro
se

co
nd

s

MPI Message Size (bytes)

MPI Off-Node Latency
KNL (1.4 GHz) vs BDW (2.1 Ghz)

KNL MPT 733

KNL MPT 740 (Opt)

KNL uGNI

BDW MPT 733

BDW uGNI

MPI Off-node Latency on KNL

February 2017 Cray Inc. Proprietary © 2017

Multi-threaded MPI Support and
Optimizations

Thread Hot Communication in Cray MPI
●  Design Objectives

●  Contention Free progress and completion
●  High bandwidth and high message rate
●  Independent progress – thread(s) flush outstanding traffic, other threads make uninterrupted progress
●  Dynamic mapping between threads and network resources
●  Locks needed only if the number of threads exceed the number of network resources

●  MPI-3 RMA
●  Epoch calls (Win_complete, Win_fence) are thread-safe, but not intended to be thread hot
●  All other RMA calls (including request-based operations) are thread hot
●  Multiple threads doing Passive Synchronization operations likely to perform best

●  MPI Pt2pt
●  MPI_Send/MPI_Recv, MPI_Isend/MPI_Irecv, MPI_Wait/MPI_Waitall will be thread hot.
●  Supports use cases where multiple threads issue Isend/Irecv ops, but master thread alone does Waitall

●  MPI_Alltoall
●  Multiple threads can issue, progress and complete Alltoall operations concurrently. Each thread has a

separate MPI_Comm handle.
●  The Allgather exchange (mem address, hndls) is protected by the big lock (room for optimization)

February 2017 Cray Inc. Proprietary © 2017
13

Multi-threading Optimizations in Cray MPI
●  Easy way to hit the ground running on a KNL – MPI only mode

●  Works quite well in our experience
●  Scaling to more than 2-8 threads most likely requires a different application design approach
●  MPI on hyperthreads may not perform well

●  “Bottom-Up” OpenMP development approach

●  “Top-Down” SPMD model
●  Increases the scope of code executed by OpenMP, allows for better load balancing and overall compute

scaling on KNL
●  Allows multiple threads to call MPI concurrently
●  In this model, performance is limited by the level of support offered by MPI for multi-

threaded communication
●  MPI implementations must offer “Thread-Hot” communication capabilities to improve

communication performance for highly threaded use cases on KNL

February 2017 Cray Inc. Proprietary © 2017
14

MPI-3 RMA Communication Bandwidth

1 MPI process per node, 32 threads, Haswell, small messages

15

0

500

1000

1500

2000

8 16 32 64 128

MB/s

Message Length (bytes)

Thread Hot MPI_Get Thread Hot MPI_Put

MPT 7.2.0 - Get MPT 7.2.0 - Put

Thread Hot Cray MPI significantly outperforms the default (global-lock) implementation with the multi-threaded
RMA benchmark for small payloads

February 2017 Cray Inc. Proprietary © 2017

MPI-3 RMA Communication Bandwidth

1 MPI process per node, 32 threads, Haswell, large messages

16

0
2000
4000
6000
8000

10000
12000
14000

MB/s

Message Length (Bytes)

Thread Hot MPI_Get Thread Hot MPI_Put

MPT 7.2.0 - Get MPT 7.2.0 - Put

Thread Hot Cray MPI outperforms the default (global-lock) implementation with the multi-threaded RMA benchmark
by about 4X for small and medium sized payloads

February 2017 Cray Inc. Proprietary © 2017

SPMD Top Down OpenMP – MPI Hybrid
●  Typical OpenMP is done on a perloop basis

●  Hopefully outer loop of loop nest
●  MPI is outside OpenMP regions

●  Single threaded
●  Hybrid approach

●  Large OpenMP regions – maybe entire program
●  Multiple simultaneous MPI transfers inside threads
●  Works best with MPI-3 one sided transfers
●  Coarray Fortran or C

●  Starting from scratch or total rewrite
●  Peter Mendygral - Wombat

February 2017 Cray Inc. Proprietary © 2017
17

KNL Optimizations

Key Environment Variables and Tips
for XC

HUGEPAGES
●  Linking and running with hugepages can offer a significant

performance improvement for many MPI communication sequences,
including MPI collectives and basic MPI_Send / MPI_Recv calls

●  Most important for applications calling MPI_Alltoall[v] or performing
point-to-point operations with a similarly well connected pattern

●  To use HUGEPAGES:
●  module load craype-hugepages8M (many sizes supported)
●  << compile your app >>
●  module load craype-hugepages8M
●  << run your app >>

February 2017 Cray Inc. Proprietary © 2017
20

Using DMAPP

●  DMAPP optimizations not enabled by default because…
●  Using DMAPP may have some disadvantages

●  May reduce resources MPICH has available (shared with DMAPP)
●  Requires more memory (for DMAPP internals)
●  DMAPP does not handle transient network errors

●  These are highly-optimized algorithms which may result in significant performance gains, but user
has to request them

●  Supported DMAPP-optimized functions
●  MPI_Allreduce (4-8 bytes)
●  MPI_Bcast (4 or 8 bytes)
●  MPI_Barrier
●  MPI_Put / MPI_Get / MPI_Accumulate

●  To use, link with libdmapp and set the following environment variable
●  Collective use: export MPICH_USE_DMAPP_COLL=1
●  RMA one-sided use: export MPICH_RMA_OVER_DMAPP=1

February 2017 Cray Inc. Proprietary © 2017
21

MPICH GNI Environment Variables
Used to optimize inter-node traffic using the Aries interconnect, the following are the most significant variables
to try (avoid significant deviations from the default if possible):

●  MPICH_GNI_MAX_VSHORT_MSG_SIZE
●  Controls max message size for E0 mailbox path (Default: varies)

●  MPICH_GNI_MAX_EAGER_MSG_SIZE
●  Controls max message size for E1 Eager Path (Default: 8K bytes)

●  MPICH_GNI_NUM_BUFS
●  Controls number of 32KB internal buffers for E1 path (Default: 64)

●  MPICH_GNI_NDREG_MAXSIZE
●  Controls max message size for R0 Rendezvous Path (Default: 4MB)

●  MPICH_GNI_RDMA_THRESHOLD
●  Controls threshold for switching to BTE from FMA (Default: 1K bytes)

See the MPI man page for further details

February 2017 Cray Inc. Proprietary © 2017
22

Specific Collective Algorithm Tuning
●  Different algorithms may be used for different message sizes in collectives (e.g.)

●  Algorithm A might be used for Alltoall for messages < 1K
●  Algorithm B might be used for messages >= 1K

●  To optimize a collective, you can modify the cutoff points when different algorithms are used,
which may improve performance

●  MPICH_ALLTOALL_SHORT_MSG

●  MPICH_ALLGATHER_VSHORT_MSG

●  MPICH_ALLGATHERV_VSHORT_MSG

●  MPICH_GATHERV_SHORT_MSG

●  MPICH_SCATTERV_SHORT_MSG

See the MPI man page for further details

February 2017 Cray Inc. Proprietary © 2017
23

Cray MPI support for MCDRAM on KNL
●  Cray MPI offers allocation + hugepage support for MCDRAM on KNL

●  Must use: MPI_Alloc_mem() or MPI_Win_Allocate()
●  Dependencies: memkind, NUMA libraries and dynamic linking
●  To use: $ module load cray-memkind

●  Preliminary release will expose this feature via environment variables
●  Users select: Affinity, Policy and PageSize

●  MPICH_ALLOC_MEM_AFFINITY = DDR or MCDRAM
●  DDR = allocate memory on DDR (default)
●  MCDRAM = allocate memory on MDCRAM

●  MPICH_ALLOC_MEM_POLICY = [M | P | I]
●  M = Mandatory: fatal error if allocation fails
●  P = Preferred: fall back to using DDR memory (default)
●  I = Interleaved: Set memory affinity to interleave across MCDRAM NUMA nodes (For SNC* cases)

●  MPICH_ALLOC_MEM_PG_SZ
●  4K, 2M, 4M, 8M, 16M, 32M, 64M, 128M, 256M, 512M (default 4K)

February 2017 Cray Inc. Proprietary © 2017
24

●  Not restricted to be used only for communication buffers, or MPI’s internal
buffers

●  Can also be used to allocate application’s data buffers

●  Cray MPI does not register the memory returned by Alloc_mem()

●  Cray MPI also does not “touch” memory allocated via Alloc_mem()
●  NUMA affinity resolved when the memory pages are first touched by the process/threads
●  It is not ideal from a NUMA perspective to have the master thread alone touch the entire buffer

right after allocation

●  MPI_Alloc_mem returns page-aligned memory for all page sizes

Using MPI_Alloc_mem()

February 2017 Cray Inc. Proprietary © 2017
25

●  When the entire data set fits within MCDRAM on a Quad/Flat system:
 aprun –Nx –ny numactl --membind=1 ./a.out

●  Easiest way to utilize hugepages on MCDRAM
●  craype-hugepage module is honored
●  Allocations (malloc, memalign) on MCDRAM will be backed by hugepages
●  However, all memory allocated on MCDRAM (including MPI’s internal memory)
●  Memory available per node limited to % of MCDRAM configured as FLAT memory

●  Alternate solutions needed to utilize hugepage memory on MCDRAM,

when the data set per node exceeds 16 Gbytes
●  Necessary to identify performance critical buffers
●  Replace memory allocation calls with MPI_Alloc_mem() or MPI_Win_allocate()
●  Use Cray MPI env. vars to control page size, memory policy and memory affinity for allocations

Typical MCDRAM Use Cases

February 2017 Cray Inc. Proprietary © 2017
26

Using MCDRAM, Dataset size > 16GB

●  Quad/Flat mode, without numactl options:
●  malloc(), memalign() will use DDR first
●  Can access MCDRAM via hbw_* or compiler directives
●  craype-hugepages module honored only on DDR
●  hbw_malloc() will return memory backed by basepages
●  Memkind can be used to get 2M hugepages on MCDRAM (but not larger)

●  Users need to identify critical buffers and use MPI_Alloc_mem() to allocate
hugepages with larger page sizes, and set affinity to MCDRAM

●  Use following environment variables:
 MPICH_ALLOC_MEM_AFFINITY=M (or MCDRAM)
 MPICH_ALLOC_MEM_PG_SZ = 16M (16M hugepages)
 MPICH_ALLOC_MEM_POLICY = P (or Preferred)

February 2017 Cray Inc. Proprietary © 2017
27

Using MCDRAM, Dataset size > 16GB (continued)

●  Quad/Flat mode, with numactl --membind=1
●  malloc() and memalign() will use MCDRAM
●  Hugepage allocations via the craype-hugepages module now possible on MCDRAM
●  But, MCDRAM space is limited. Scaling issues

●  Users can identify buffers not critical to application performance and use
MPI_Alloc_mem() to set affinity to DDR

●  Use following env. vars:
 MPICH_ALLOC_MEM_AFFINITY=D (or DDR)
 MPICH_ALLOC_MEM_PG_SZ = <as needed, defaults to 4KB base pages>
 MPICH_ALLOC_MEM_POLICY = P (or Preferred)

February 2017 Cray Inc. Proprietary © 2017
28

Summary and Recommendations

●  Optimizations in Cray MPI to improve pt2pt and collective
latency on KNL

●  Enhancements in Cray MPI to enable users to best utilize
the MCDRAM technology on KNL (hugepages)

●  New solutions in Cray MPI to offer Thread-Hot capabilities
on Intel Xeon and Intel KNL architectures

●  MPI-only works quite well on KNL

February 2017 Cray Inc. Proprietary © 2017
29

Summary and Recommendations (continued)

●  Necessary to use –r1 to reduce performance variability
●  Node rank reordering
●  Load Balance
●  Using hugepages on MCDRAM can improve large message communication

performance
●  Multi-threaded MPI is an important tool on KNL for hybrid applications
●  Asynchronous communication can hide/overlap communication overheads on KNL
●  Collectives implemented with user pt2pt is strongly discouraged

●  Especially for alltoall, bcast, and gather
●  Very unlikely pt2pt will perform better
●  If they do, please file a bug with Cray

February 2017 Cray Inc. Proprietary © 2017
30

Thank You!

Legal Disclaimer
Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights
is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and other
third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal
codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA,
and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the property of their
respective owners.

Copyright 2016 Cray Inc.

February 2017 Cray Inc. Proprietary © 2017
32

