. . \\\\ O

Cray Performance Tools

Gene Wagenbreth
Performance Engineer
gwagenbret@cray com

Agenda

e Overview

e Using Cray Performance Tools
e Bottleneck Detection

e Imbalance

e MPI rank reordering

February 2017 Cray Inc. Proprietary © 2017

lllll

Cray Performance Analysis Tools CRANY

e Whole program performance analysis with
e Novice and advanced user interfaces
Support for MPIl, SHMEM, OpenMP, UPC, CAF, OpenACC, CUDA
Load imbalance detection
HW counter metrics (hit rates, computational intensity, etc.)
Observations and inefficiencies
Data correlation to user source
Minimal program perturbation

e Sampling, tracing with runtime summarization, full trace (timeline)
modes available

e Supports CCE, Intel and GCC compilers

February 2017 Cray Inc. Proprietary © 2017

\
Cray Performance Analysis Tools CRANY

e Convenient to make many small runs to optimize performance

e Should make some large runs to verify that observations carry \
over to large runs

e Apprentice2 provides visual interface to performance data

February 2017 Cray Inc. Proprietary © 2017

Two Modes of Use — P

e CrayPat-lite for novice users, or convenience

e CrayPat for in-depth performance investigation and
tuning assistance

e Both offer:

e Whole program analysis across many nodes
e Indication of causes of problems
e Suggestions of maodifications for performance improvement

February 2017 Cray Inc. Proprietary © 2017

“Lite” Mode

Load performance tools instrumentation module .

$ module load perftools-base
$ module load perftools-lite

Build program
(no modification to makefile)

$ make

Run program

(no modification to batch script)

$ aprun a.out

a.out (instrumented program)

Condensed report to stdout h
a.out*.rpt (same as stdout)
a.out*.ap2
files

Example CrayPat-lite Output =o'

e \
S \
\
Table 1: Profile by Function Group and Function (top 10 functions
shown)
CrayPat-lite Performance Statistics
Samp% | Samp | Imb. | Imb. |Group
| | Samp | Samp% | Function \
I I [| PE=HIDE
CrayPat/X: Version 6.3.2.461 Revision 56930ff ©2/01/16 15:31:33 le0.0% | 6,156.2 | -- | -- |Total
Experiment: lite lite/sample_profile I__éé_;%_i_;_ééi_;_i____::_i____::_iﬁééi ________________________
5 9 o
Number of PEs (MPI ranks): 64 |[|ommmmesmessmsssscmssmssmmasmassassassasmacsassassaesaeeamEamEs
Numbers of PEs per Node: 32 PEs on each of 2 Nodes [l 11.8% | 729.2 | 48.8 | 6.4% |mult_su3_mat_vec_sum_adir
10.2% | 629.4 | 49.6 | 7.4% |mult_adj_su3_mat_4vec
Numb f Thread PE: 1 ¥ =R
Hlibes e W s | 6.1% | 377.1 | 28.9 | 7.2% |mult_su3_nn
Number of Cores per Socket: 16 || 5.9% | 365.4 | 42.6 | 10.6% |mult_su3_na
Execution start time: Tue Feb 2 18:53:50 2016 || 5.4% | 329.4 | 37.6 | 10.4% |scalar_mult_add_lathwvec_proj
systen nane and speed: kay 2301 Mz (approo) I e e e)
| 25.3% | 1,557.0 | ao | -- |mPI
Avg Process Time: 64.38 secs e e e P e L LT
High M . 1 MB 24.43 MB PE |l 12.8% | 789.3 | 163.7 | 17.5% |MPI_Wait
1gh Flemory »563 MBytes 3. ytes per || 6.7% | 411.9 | 74.1 | 15.5% |MPI_Isend
MFLOPS: Not supported (see observation below) I 4.9% | 300.2 | 95.8 | 24.6% |MPI_Allreduce
I/0 Read Rate: 48.514130 MBytes/sec ||==
I/0 Write Rate: 22.281350 MBytes/sec :I 5.9% | 365.4 | 44.6 | 11.1% |STRING
Avg CPU Energy: 41,820 joules 20,910 joules per no [5.9% | 365.4 | 44.6 | 11.1% |memcpy
AVg CPU Power: 649.53 watts 324.77 watts per nod |::

Identify High Time Consuming Areas

Samp% |
|
|
|
|
|

100.0%

55,605.7

Samp |

Table 2: Profile by Group, Function, and Line

Imb. | Imb. |Group
Samp% | Function
| Source

| PE=HIDE

|
|
| | Line
|
| -- |Total

| 56.5% | 31,412.8 |

[| 19.7% | 10,944.1 |

_ | == |create_boundary$boundary_

3| | | | | source.omp_removed/test/compile/boundary.£90
| e
4||| 7.8% | 4,355.9 | 175.1 | 3.9% |line.265

4| 1.8% | 977.0 | 98.0 | 9.1% |line.268

4| 1.1% | 617.0 | 94.0 | 13.2% |line.273

4||| 2.0% | 1,133.6 | 101.4 | 8.2% |line.549

al|| 1.13 | 590.0 | 66.0 | 10.1% |line.557

111

|| 10.7% | 5,937.8 | -— | -- |get_blocks$blocks_

3| | | | | source.omp_removed/test/compile/blocks.£90
| e
4||| 4.1% | 2,305.7 | 145.3 | 5.9% |line.221

4| 1.0% | 569.5 | 77.5 | 12.0% |line.243

4||| 2.9% | 1,610.1 | 134.9 | 7.7% |line.246

\
Guidance: How Can | Learn More? CRAY

MPI utilization:

The time spent processing MPI communications is relatively high.
Functions and callsites responsible for consuming the most time can
be found in the table generated by pat_report -0 callers+src (within
the MPI group).

4

Guidance: Reduce Shared Resource Contention

Metric-Based Rank Order:

that improves the balance.

Rank Node Reduction
Order Metric in Max
Imb. Value

Current 15.46%
Custom 1.46% 14.202%

Maximum
Value

1.134e+03
9.731e+02

When the use of a shared resource like memory bandwidth is unbalanced
across nodes, total execution time may be reduced with a rank order

A file named MPICH_RANK_ORDER.USER_Time was generated
along with this report and contains usage instructions and the
custom rank order from the following

table.

Average
Value

9.588e+02
9.588e+02

Data from pat_report cRac

(Y \
S \
\

e Default reports are intended to be useful for most
applications \

e Don’t need to rerun program to get more detailed data

e Different aggregations, or levels of information
available

e Get fined-grained thread-imbalance information for OpenMP
program built with CCE
o $ pat_report -s pe=ALL —s th=ALL

February 2017 Cray Inc. Proprietary © 2017

®
\
CR=RAY |
[Y \

More In-depth Analysis and
Bottleneck Detection

How to Use CrayPat oy

e Make sure the following modules are loaded:
o $ module load perftools-base perftools

. . Same sampling
e 2 instrumentation examples: experiment is used when

o $ pat_build my_ program perftools-lite module is
o $ pat_build —u —g mpi my_program loaded

e Run application
e $aprun-n... my_ program+pat

e Create report
o $ pat_report my_ program.xf > my_report

February 2017 Cray Inc. Proprietary © 2017

Sample vs Trace

e Sample mode
e Checks program counter and call stack 60 times per second \

Minimal effect on execution

e Trace mode

Trace code inserted

Other information such as MPI message size
Cray compiler only — loops and loop lengths
Trace of small routines affects runtime

e Trace routines from sample run

February 2017

2 step — sample then trace gives best of both

Cray Inc. Proprietary © 2017

Predefined Trace Wrappers (-g tracegroup)

e blas Basic Linear Algebra subprograms

o caf Co-Array Fortran (Cray CCE compiler only)
e hdf5 manages extremely large data collection

e heap dynamic heap

e io includes stdio and sysio groups

e lapack Linear Algebra Package

e math ANSI math

e mpi MPI

e omp OpenMP API

e pthreads POSIX threads

e shmem SHMEM

e sysio 1/O system calls

e system system calls

e upc Unified Parallel C (Cray CCE compiler only)

For a full list, please see pat_build(1) man page

February 2017 Cray Inc. Proprietary © 2017

Control Data Collection with Runtime Options ==A:Yf '

S \
\

e Runtime controlled through PAT_RT_XXX environment
variables

e See intro_craypat(1) man page

e Examples of control
e Enable full trace
e Change number of data files created
o Enable collection of CPU, network or power counter events
o

Enable tracing filters to control trace file size (max threads, max call
stack depth, etc.)

February 2017 Cray Inc. Proprietary © 2017

\
Performance Counters Overview { _P_N

Q \
S \
\

e Cray supports raw counters, derived metrics and thresholds for:
e Processor (core and uncore) \
e Network
e Accelerator
e Power
e Counters restricted for Haswell and KNL

e Predefined groups
e Groups together counters for experiments

e See hwpc, nwpc, accpc, and rapl man pages

February 2017 Cray Inc. Proprietary © 2017

How to Get List of Events for a Processor cRac

e Run the following utility on a compute node:
e papi_native_avalil

e To collect performance counters

o Set PAT_RT_PERFCTR environment variable to list of events or
group prior to execution

February 2017 Cray Inc. Proprietary © 2017

20

MPI Sync Time cRas

)
S \
\

e Measure load imbalance in programs instrumented to
trace MPI functions to determine if MPI ranks arrive at
collectives together

-

e Separates potential load imbalance from data transfer

e Sync times reported by default if MPI functions traced
(pat_build —g mpi)

21
February 2017 Cray Inc. Proprietary © 2017

\
Motivation for Load Imbalance Analysis CRAaN

(Y \
S \
\

e Increasing system software and architecture complexity

e Current trend in high end computing is to have systems with tens of
thousands of processors
e This is being accentuated with multi-core processors

e Applications have to be very well balanced In order to perform
at scale on these MPP systems

o Efficient application scaling includes a balanced use of requested
computing resources

e Desire to minimize computing resource “waste”
e ldentify slower paths through code
e lIdentify inefficient “stalls” within an application

22
February 2017 Cray Inc. Proprietary © 2017

Find Program Load Imbalance

Table 1:

Time% | Time |

100.0% | 1.957703 |

Profile by Function Group and Function

Imb. | Imb. | Calls |Group
Time | Time% | | Function
| | | PE=HIDE

- -- | 42,970.8 |Total

60.0% | 1.174021 |

30.8% | 0.603850 |
19.2% | 0.375117 |
9.1% | 0.178111 |

0.176924 | 23.0% | 1,198.0 |cale3_
0.128748 | 26.0% | 1,200.0 |calc2_
0.081880 | 32.0% | 1,200.0 |calcl_

36.0% | 0.704928 |

-— | -- | 9,613.0 |MPI_SYNC

25.8% | 0.505174 |
10.2% | 0.199537 |

0.385130 | 76.2% | 9,596.0 |mpi_barrier_(sync)
0.199518 | 100.0% | 1.0 |mpi_init_(sync)

4.0% | 0.078736 |

= | -- | 29,754.8 |MPI

2.3% | 0.045351 |
1.1% | 0.021520 |

0.003531 | 7.3% | 9,596.0 |MPI_BARRIER
0.051295 | 71.6% | 8,756.9 |MPI_ISEND

Load Imbalance May be Misleading

e Time may show in Barrier, Send or Recv
e May be due to cpu imbalance elsewhere

February 2017 Cray Inc. Proprietary © 2017

24

Sort MPI Messages by Caller

MPI | MPI Msg | MPI Msg | MsgSz | 4KiB<= |Function
Msg | Bytes | Count | <16 | MsgSz | Caller
Bytes% | | | Count | <64KiB | PE=[mmm]
| | | | Count |

100.0% | 34,940,767.4 | 8,771.9 | 258.6 | 8,513.3 |Total

| __
| 100.0% | 34,940,647.4 | 8,756.9 | 243.6 | 8,513.3 |MPI_ISEND
e
|| 56.2% | 19,622,700.0 | 4,837.5 | 56.2 | 4,781.2 |calc2_
3| | | | | | shalow
| = mmm e -
4||| 56.4% | 19,718,400.0 | 7,200.0 | 2,400.0 | 4,800.0 |pe.O
4||| 56.4% | 19,699,200.0 | 4,800.0 | 0.0 | 4,800.0 |pe.32
4||| 42.3% | 14,784,000.0 | 4,800.0 | 1,200.0 | 3,600.0 |pe.63
111

|| 42.5% | 14,851,950.0 | 3,693.8 | 75.0 | 3,618.8 |calcl_
3| | | | | | shalow_
| mmmmmm e -
4||| 56.4% | 19,718,400.0 | 7,200.0 | 2,400.0 | 4,800.0 |pe.O
4||| 42.3% | 14,774,400.0 | 3,600.0 | 0.0 | 3,600.0 |pe.31
4||| 42.3% | 14,774,400.0 | 3,600.0 | 0.0 | 3,600.0 |pe.62

\
Analyze MPI Message Sizes ANy

Total MPI_Send / LAMMPS_NS::Comm: :reverse_comm

MPI Msg Bytes$% 100.0% MPI Msg Bytes$ 48.6%

MPI Msg Bytes 4,465,684,125.8 MPI Msg Bytes 2,171,466,150.3

MPI Msg Count 13,057.0 msgs MPI Msg Count 6,006.0 msgs

MsgSz <16 Count 719.0 msgs MsgSz <16 Count 0.0 msgs

16<= MsgSz <256 Count 28.0 msgs 16<= MsgSz <256 Count 0.0 msgs

256<= MsgSz <4KiB Count 0.7 msgs 256<= MsgSz <4KiB Count 0.0 msgs

4KiB<= MsgSz <64KiB Count 279.8 msgs 4KiB<= MsgSz <64KiB Count 0.0 msgs

64KiB<= MsgSz <1MiB Count 12,029.6 msgs 64KiB<= MsgSz <1MiB Count 6,006.0 msgs

MPI_Send MPI_Send / LAMMPS_NS::Comm::reverse_comm / LAMMPS_NS::Verlet::run

MPI Msg Bytes$% 100.0% MPI Msg Bytes$% 48.6%

MPI Msg Bytes 4,465,680,353.8 MPI Msg Bytes 2,169,218,110.3

MPI Msg Count 12,318.0 msgs MPI Msg Count 6,000.0 msgs
MsgSz <16 Count 8.0 msgs MsgSz <16 Count 0.0 msgs
16<= MsgSz <256 Count 0.0 msgs 16<= MsgSz <256 Count 0.0 msgs
256<= MsgSz <4KiB Count 0.7 msgs 256<= MsgSz <4KiB Count 0.0 msgs
4KiB<= MsgSz <64KiB Count 279.8 msgs 4KiB<= MsgSz <64KiB Count 0.0 msgs

64KiB<= MsgSz <1MiB Count 12,029.6 msgs 64KiB<= MsgSz <1MiB Count 6,000.0 msgs

]
CRAY

e \

Maximize On-node
Communication by Reordering
MPI ranks

When Is Rank Re-ordering Useful? ==AY:’ '

S \
\

e Maximize on-node communication between MPI ranks

e Physical system topology agnostic

e Grid detection and rank re-ordering is helpful for programs
with significant point-to-point communication

e Relieve on-node shared resource contention by pairing
threads or processes that perform different work on the

same node
o for example: computation with off-node communication

28
February 2017 Cray Inc. Proprietary © 2017

MPI Rank Reorder — Two Interfaces Available ==A:Yf '

S \
\

e CrayPat
e Available with sampling or tracing
e Include —g mpi when instrumenting program

e Run program and let CrayPat determine if communication is
dominant, detect communication pattern and suggest MPI rank
order if applicable

e grid_order utility
e User knows communication pattern in application and wants to
quickly create a new MPI rank placement file
e Available when perftools-base module is loaded

29
February 2017 Cray Inc. Proprietary © 2017

MPI Rank Order Observations

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | cCalls |Group
| | Time | Time% | | Function
| | | | | PE=HIDE

100.0% | 463.147240 | — ||

| 221.142266 | 36.214468 |
| 19.829001 | 25.849906 |

-- | 21621.0 |Total

14.1% | 10740.0 |mpi_recv
56.7% | 10740.0 |MPI_SEND

| 189.897060 | 58.716197 |
| 7.579876 | 1.899097 |

-— | 32.0 |USER
23.6% | 12.0 |sweep_
20.1% | 12.0 |source_

-— | 39.0 |MPI_SYNC

99.6% | 32.0 | mpi_allreduce_(sync)

-— | 27.0 |SYSCALL

MPI Rank Order Observations (2)

MPI Grid Detection:

There appears to be point-to-point MPI communication in a 96 X 8
grid pattern. The 52% of the total execution time spent in MPI
functions might be reduced with a rank order that maximizes
communication between ranks on the same node. The effect of several
rank orders is estimated below.

A file named MPICH_RANK ORDER.Grid was generated along with this
report and contains usage instructions and the Custom rank order
from the following table.

Rank
Order

Custom

SMP

Fold
RoundRobin

On-Node
Bytes/PE

2.385e+09
1.880e+09
1.373e+06
0.000e+00

On-Node
Bytes/PE%
of Total
Bytes/PE

95.55%
75.30%
0.06%
0.00%

MPICH_RANK REORDER METHOD

ONREFW

-
]
CRAY

Auto-Generated MPI Rank Order File

The 'user Time_hybrid' rank
order in this file targets
nodes with multi-core

processors, based on Sent
Msg Total Bytes collected
for:

#

Program: /lus/
nid00023/malice/craypat/
WORKSHOP/bh20-demo/Rank/
sweep3d/src/sweep3d

Ap2 File:
sweep3d.gmpi-u.ap2

Number PEs: 768

Max PEs/Node: 16

#

To use this file, make a
copy named MPICH_RANK ORDER,
and set the

environment variable
MPICH_RANK_REORDER METHOD to
3 prior to

executing the program.

#
0,532,64,564,32,572,96,540,8
,596,72,524,40,604,24,588
104,556,16,628,80,636,56,620
,48,516,112,580,88,548,120,6
12

1,403,65,435,33,411,97,443,9
,467,25,499,105,507,41,475

73,395,81,427,57,459,17,419,
113,491,49,387,89,451,121,48
3

6,436,102,468,70,404,38,412,
14,444,46,476,110,508,78,500

86,396,30,428,62,460,54,492,
118,420,22,452,94,388,126,48
4
129,563,193,531,161,571,225,
539,241,595,233,523,249,603,
185,555
153,587,169,627,137,635,201,
619,177,515,145,579,209,547,
217,611

7,405,71,469,39,437,103,413,
47,445,15,509,79,477,31,501
111,397,63,461,55,429,87,421
,23,493,119,389,95,453,127 ,4
85
134,402,198,434,166,410,230,
442,238,466,174,506,158,394,
246,474

190,498,254,426,142,458,150,
386,182,418,206,490,214,450,
222,482
128,533,192,541,160,565,232,
525,224,573,240,597,184,557,
248,605

168,589,200,517,152,629,136,
549,176,637,144,621,208,581,
216,613

5,439,37,407,69,447,101,415,

13,471,45,503,29,479,77,511
53,399,85,431,21,463,61,391,
109,423,93,455,117,495,125,4
87

2,530,34,562,66,538,98,522,1
0,570,42,554,26,594,50,602
18,514,74,586,58,626,82,546,
106,634,90,578,114,618,122,6
10

135,315,167,339,199,347,259,
307,231,371,239,379,191,331,
247,299

175,363,159,323,143,355,255,
291,207,275,183,283,151,267,
215,223

133,406,197,438,165,470,229,
414,245,446,141,478,237,502,
253,398
157,510,189,462,173,430,205,
390,149,422,213,454,181,494,
221,486
130,316,260,340,194,372,162,
348,226,308,234,380,242,332,
250,300
202,364,186,324,154,356,138,
292,170,276,178,284,210,218,
268,146
4,535,36,543,68,567,100,527,
12,599,44,575,28,559,76,607
52,591,20,631,60,639,84,519,
108,623,92,551,116,583,124,6
15

3,440,35,432,67,400,99,408,1
1,464,43,496,27,472,51,504
19,392,75,424,59,456,83,384,
107,416,91,488,115,448,123,4
80
132,401,196,441,164,409,228,
433,236,465,204,473,244,393,
188,497

252,505,140,425,212,457,156,
385,172,417,180,449,148,489,
220,481
131,534,195,542,163,566,227,
526,235,574,203,598,243,558,
187,606

251,590,211,630,179,638,139,
622,155,550,171,518,219,582,
147,614

761,660,737,652,705,668,745,
692,673,700,641,684,713,644,
753,724
729,732,681,756,721,716,764,
676,697,748,689,657,740,665,
649,708
760,528,736,536,704,560,744,
520,672,568,712,592,752,552,
640,600
728,584,680,624,720,512,696,
632,688,616,664,544,608,656,
648,576
762,659,738,651,706,667,746,
643,714,691,674,699,754,683,
730,723

722,731,763,658,642,755,739,
675,707,650,682,715,698,666,
690,747

257,345,265,313,281,305,273,
337,609,369,577,377,617,329,
513,529
545,297,633,361,625,321,585,
537,601,289,553,353,593,521,
569,561

256,373,261,341,264,349,280,
317,272,381,269,309,285,333,
277,365

352,301,320,325,288,357,328,
304,360,312,376,293,296,368,
336,344

258,338,266,346,282,314,274,
370,766,306,710,378,742,330,
678,362

646,298,750,322,718,354,758,
290,734,662,686,670,726,702,
694,654
262,375,263,343,270,311,271,
351,286,319,278,342,287,350,
279,374
294,318,358,383,359,310,295,
382,326,303,327,367,366,335,
302,334

765,661,709,663,741,653,711,
669,767,655,743,671,749,695,
679,703

677,727,751,693,647,701,717,
687,757,685,733,725,719,735,
645,759

Using New MPI Rank Order cRasy |

e \
S \

e Save grid_order output to file called MPICH_RANK ORDER
® $ export MPICH RANK REORDER METHOD=3

e Run non-instrumented binary with and without new rank order
to check overall wallclock time for performance improvements

e Can be used for all subsequent executions of same job size

33
February 2017 Cray Inc. Proprietary © 2017

\
Summary C:AY\ |

)
S \
\

e Users continue to need tools to help find critical
performance bottlenecks within a program \

e Cray performance tools offer functionality that reduces
the time investment associated with porting and tuning
applications on new and existing Cray systems

34
February 2017 Cray Inc. Proprietary © 2017

C=RAANY

COMPLITE ANALYZE

sarr
PO 501
P

P LT DI o o
POOOOBEEEE S S e a0

"1’4000‘0000“000000—"’

Arigatou

gozaimashita
¢ \

\
Legal Disclaimer SR

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights »
is granted by this document. S \

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.
All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and other
third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal
codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA,
and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.. CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the property of their
respective owners.

Copyright 2016 Cray Inc.

February 2017 Cray Inc. Proprietary © 2017 36

