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Outline

• Using the datascience modules on Theta

• How we built TensorFlow, PyTorch, Keras, and Horovod

• Best practices for using the modules / installing other python packages

• Optimal setup for efficient single node performance (TensorFlow)

• Data parallel training with Horovod

• Visualization through Tensorboard remotely

• Profiling: timeline trace, Vtune, MKL-DNN verbose output
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“datascience” modules on Theta

• Compiled using GCC/8.2.0 with “–g” flag and AVX512, specifically 

optimized for KNL

• Based on intelpython 3.6, not compatible with other python modules, such 

as miniconda, cray-python, alcf-python (we still have old 

datascience/intelpython35/* modules available; but we will migrate to 

intelpython36)

• PyTorch and TensorFlow are linked to MKL and MKL-DNN 

• Horovod, mpi4py, and h5py are linked to Cray MPI

• H5py is with parallel HDF5 support; 

[xxx@thetalogin4 ~]$ module avail datascience

-------------- /soft/environment/modules/modulefiles ---------------
datascience/horovod-0.16.1 datascience/tensorflow-1.13
datascience/keras-2.3.0 datascience/tensorflow-1.14
datascience/pytorch-1.1          datascience/tensorflow-2.0-rc2
datascience/tensorboard datascience/mpi4py-3.0.2
Datascience/h5py-2.9.0

All the libraries are dynamically linked, be careful of your LD_LIBRARY_PATH, PYTHONPATH.
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How to use the “datascience” modules 
• module load datascience/tensorflow-1.14 (horovod and intelpython36 

are loaded automatically)
• The packages do NOT run directly on login nodes or mom nodes.

#!/bin/bash
#COBALT -A project 
#COBALT -n node 
#COBALT -q default --attrs mcdram=cache:numa=quad
module load datascience/tensorflow-1.14 datascience/keras-2.3.0
aprun -n nproc -N nproc_per_node -cc depth -j 2 python script

• Run with qsub script.sh, or on mom node interactively through aprun.

Illegal instruction!

• Download/transfer the datasets to Theta first; the compute nodes do not 
have access to external internet. 
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How to use the “datascience” modules
• If your applications need other custom python packages, pip install the 

package to a separate directory and add the path to your PYTHONPATH:

> module load intelpython36 gcc/8.2.0

> pip install package_name –target=/path_to_install

> export PYTHONPATH=/path_to_install/:$PYTHONPATH

• Or you could try to build your own package as follows: 
> module load intelpython36 gcc/8.2.0

> python setup.py build

> python setup.py install --prefix=/path_to_install/

> export PYTHONPATH=/path_to_install/lib/python3.6/site-packages/:$PYTHONPATH

Remember to add “export PYTHONPATH=extra_python_paths:$PYTHONPATH” in 
your submission scripts. 

• You don’t need to use virtual environment. If you use that, be careful not 

to override the TensorFlow, PyTorch and Horovod packages.
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How to use the “datascience modules”
• If you use mpi4py or h5py, load other modules first, and load 

h5py/mpi4py AT THE END to override the h5py and mpi4py packages 
in other modules

module load intelpython36
…
module load XXX
module load h5py

• Avoid installing packages to .local/lib/python3.6/site-packages (never do 
pip install XXX --user)

• If you want to link python functions to your simulation code, remember to 
use dynamic linking when compiling your application by adding ”-dynamic” 
to the compiler flag; by default, Theta uses static linking. 

• Let us know if you encounter any issues support@alcf.anl.gov.

mailto:support@alcf.anl.gov
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Optimal setups for best 
performance on KNL
TensorFlow CNN benchmarks 
https://github.com/tensorflow/benchmarks
ImageNet models: AlexNet, ResNet50, Inception V3

H. Zheng, E. Jennings, W. Scullin, V. Mrovozov, and V. Vishwanath,  Performance evaluation and 
analysis of TensorFlow on Cray XC40, submitted to SC19 Deep Learning on HPC workshop

https://github.com/tensorflow/benchmarks
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TensorFlow internal threading setup (For CPUs)
- intra_op_parallelism_threads: this sets the number of threads available in the pool. The thread 

pool is divided to different thread teams at runtime for executing different operations concurrently; 
- inter_op_parallelism_threads: this sets the maximum number of thread teams which perform 

different TensorFlow operations concurrently. 
Threading setup in the python script

config = tf.ConfigProto()
config.intra_op_parallelism_threads = num_intra
config.inter_op_parallelism_threads = num_inter
tf.Session(config=config)

Optimal setup on Theta based on benchmarks
§ inter_op_parallelism_threads = 1, 2
§ Intra_op_parallelism_threads = 

OMP_NUM_THREADS
§ Use aprun -e OMP_NUM_THREADS=.. to setup 

threads Training throughput of AlexNet, ResNet50 and Inception V3 
for different inter and intra threading setups (batch size = 
512). In all the cases, we set OMP NUM THREADS = num
intra. 
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TensorFlow internal threading setup
Timeline tracing of a single training steps

• Blocks of different colors correspond to execution 
of different operations.

• Different rows correspond to operations executed 
on different thread teams.

• At specific time slice, the number of operations 
executed concurrently is less than num_inter

Number of operators executed at different 
timestamps at a training step for AlexNet, 
ResNet50, and Inception V3. 
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KMP_BLOCKTIME

OpenMP environmental variables

The default value in MKL is 200ms, which was not 
optimal in our testing. The optimal is 0. 
You could set KMP_BLOCKTIME in two ways:  
• Parse through aprun: 

aprun ... -e KMP_BLOCKTIME=0 …
• Set inside your python script: 

os.environ[‘KMP_BLOCKTIME’]=0

KMP_AFFINITY

Always specify  “aprun … -cc depth”

Optimal value: granularity=fine,verbose,compact,1,0

KMP_BLOCKTIME sets the time (in ms) that a thread shall wait before 
sleeping, after completing the execution of a parallel region.
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OpenMP thread scaling

Throughput scaling of TensorFlow on a single node through OpenMP. For the cases of 
1-64 threads, one thread per core was set; for the cases of 128 and 256 threads, 2 and 
4 hyper threads per core were set respectively. Dash curves indicate ideal scaling. 

Two hyper threads per core 
gives optimal performance.

aprun … -j 2 –e 
OMP_NUM_THREADS=128 …
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Memory mode and batch size

Training throughput on different memory modes for ImageNet models: AlexNet, ResNet50, 
and Inception V3. Some Flat(HBM) bars are omitted as the memory footprint is larger than 
16GB - the capacity of MCDRAM. 

• Always use Cache mode to take 
advantage of high bandwidth of 
MCDRAM (16 GB) and high memory 
capacity of DDR4 (192 GB). 

Cache – MCDRAM serves as a cache to DDR4
Flat(HBM) – memory is allocated in MCDRAM
Flat(DDR) – memory is allocated in in DDR4
Flat(HBMp) – memory is allocated in MCDRAM 
first and then spread to DDR4
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Flat profiling from timeline trace

• A large portion of the execution time spent on 
the two math libraries, MKL-DNN and Eigen.

• Mkl* operations take 64%, 94% and 93% of 
the total time in AlexNet, ResNet50 and 
Inception V3 respectively. 
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Performance of CPUs and GPUs for deep learning

The performance of KNL is about 1/10 – 1/5 of the performance of V100. 
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Data parallel training through Horovod

Examples
/projects/SDL_Workshop/DeepLearningFrameworks
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Need for distributed (parallel) training on HPC
“Since 2012, the amount of compute used in the largest AI training runs has been increasing 
exponentially with a 3.5 month doubling time (by comparison, Moore’s Law had an 18 month 
doubling period).” https://openai.com/blog/ai-and-compute/

Eras:
• Before 2012 …

• 2012 – 2014: single to couple GPUs

• 2014 – 2016: 10 – 100 GPUs

• 2016 – 2017: large batch size training, 

architecture search, special hardware 

(etc, TPU)

Finishing a 90-epoch ImageNet-1k 
training with ResNet-50 on a NVIDIA M40 
GPU takes 14 days. (1018 SP Flops)

~1m – 1 hours on ALCF Theta (~10 
petaFlops) if it “scales ideally”.
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Need for distributed (parallel) training on HPC

• Increase of model complexity leads to dramatic 

increase of computation;

• Increase of the amount of dataset makes 

sequentially scanning the whole dataset 

increasingly impossible;

• Coupling of deep learning to traditional HPC 

simulations might require distributed inference.
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Parallelization schemes for distributed learning
Worker 4

Worker 3 Worker 2

Worker 1

Worker 1 Worker 4 Worker N 

…

Model parallelism Data parallelism
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Deep dive on model parallelism (Horovod)

Stochastic Gradient Descent (SGD) update

Dataset Weight

Batch

Minimizing the loss: 

Model is updated at each step. It scans through 
the entire dataset once at one epoch. 

• Model is replicated on all the workers;
• One batch B is divided into many sub batches 

!" feed to different workers
• Gradients are averaged at each training step. 
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https://eng.uber.com/horovod/

#$
#% =

1
()

*+,

- #$*
#% = 1

.! )
"+,

/

)
*∈12

#$*
#% .



Argonne Leadership Computing Facility20

Scaling the batch size

We suggest to use weak scaling to maintain high throughput per node.  

Scaling Global batch size  (B) Local batch size (bw)
Strong scaling B0 B0/N
Weak scaling N*B0 B0

Square root scaling ! ∗B0 B0/ !

Different ways of scaling in data parallel training 
(suppose the original batch size is B0)
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Linear scaling rule
When the batch size is multiplied by k, multiply the learning rate by k. 

• k steps with learning rate ! and batch size "

• Single step with new learning rate !̂ and large 
batch ∪% &% (batch size '")

If ∇) *, ,-.% ∼ ∇) *, ,- we have, 0,-.1 ∼ ,-.2.
Ideally, large batch training with a scaled learning 
rate will reach the similar minimum with fewer 
steps.

The optimal learning for a range of batch sizes, for 
an SVHN classifier trained with SGD

S. McCandlish, J. Kaplan, D. Amodei, arXiv:1812.06162
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Challenges with large batch training
• Convergence issue: at the initial stages of training, the model is far 

away from optimal solution ∇" #,%&'( ∼ ∇" #,%& breaks down. Training 
is not stable with large learning rate in the beginning;

• Generalization gap: large batch size training tends to be trapped at 
local minimum with lower testing accuracy (generalize worse).

“... large-batch ... converge to sharp minimizers of the training 
function ... In contrast, small-batch methods converge to flat 
minimizers” 

Performance of small-batch (SB) and large-batch 
(LB) variants of ADAM on the 6 networks 

Keskar et al, arXiv:1609.04836 
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Challenges with large batch training
Solution: using warm up steps 
• Use a smaller learning rate at the initial stage of training (couple 

epochs), and gradually increase to "̂ = $"
• Use linear scaling of learning rate ("̂ = $")

No warm up Gradual warm up This scheme works up to 
8k batch size

P. Goyal et al,arXiv: 1706.02677 

ResNet-50 training
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Challenges with large batch training

Predicted critical maximum batch 
size beyond which the model 
does not perform well. 

S. McCandlish, J. Kaplan, D. Amodei, 
arXiv:1812.06162

Maximum batch size places a strong 
scaling limit to data parallel: 

# of workers < maximum batch size
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Data parallel training with Horovod

• Import Horovod modules and initialize horovod;
• Wrap optimizer using hvd.DistributedOptimizer: scale the 

learning rate by number of workers;
• Broadcast the weights from worker 0 to all the workers;
• Let worker 0 write check point files
• Data loading: 

• Option 1. All the workers scan through the whole dataset in 
a random way (make sure that different worker have 
different random seeds);

• Option 2. Divide the dataset and each worker only scans 
through a subset of dataset.

How to change a series code into a data parallel code: 

https://eng.uber.com/horovod/
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TensorFlow with Horovod
import tensorflow as tf
import horovod.tensorflow as hvd
layers = tf.contrib.layers
learn = tf.contrib.learn
def main():

# Horovod: initialize Horovod.
hvd.init() 
# Download and load MNIST dataset.
mnist = learn.datasets.mnist.read_data_sets('MNIST-data-%d' % hvd.rank())
# Horovod: adjust learning rate based on number of GPUs.
opt = tf.train.RMSPropOptimizer(0.001 * hvd.size())
# Horovod: add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)
hooks = [

hvd.BroadcastGlobalVariablesHook(0), 
tf.train.StopAtStepHook(last_step=20000 // hvd.size()), 
tf.train.LoggingTensorHook(tensors={'step': global_step, 'loss': loss},

every_n_iter=10),
]

checkpoint_dir = './checkpoints' if hvd.rank() == 0 else None
with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,

hooks=hooks,
config=config) as mon_sess

https://github.com/uber/horovod/blob/master/examples/tensorflow_mnist.py
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PyTorch with Horovod
#…
import torch.nn as nn
import horovod.torch as hvd
hvd.init()
train_dataset = datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,

transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))

]))
train_sampler = torch.utils.data.distributed.DistributedSampler(

train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.DataLoader(

train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
# Horovod: broadcast parameters.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
# Horovod: scale learning rate by the number of GPUs.
optimizer = optim.SGD(model.parameters(), lr=args.lr * hvd.size(),

momentum=args.momentum)
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(

optimizer, named_parameters=model.named_parameters())

https://github.com/uber/horovod/blob/master/examples/pytorch_mnist.py
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Keras with Horovod
import keras
import tensorflow as tf
import horovod.keras as hvd
# Horovod: initialize Horovod.
hvd.init()
# Horovod: adjust learning rate based on number of GPUs.
opt = keras.optimizers.Adadelta(1.0 * hvd.size())
# Horovod: add Horovod Distributed Optimizer. 
opt = hvd.DistributedOptimizer(opt)
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=opt,
metrics=['accuracy'])

callbacks = [
# Horovod: broadcast initial variable states from rank 0 to all other processes.
hvd.callbacks.BroadcastGlobalVariablesCallback(0),

]
# Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them.
if hvd.rank() == 0:

callbacks.append(keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5'))
model.fit(x_train, y_train, batch_size=batch_size,

callbacks=callbacks,
epochs=epochs,
verbose=1, validation_data=(x_test, y_test))

https://github.com/uber/horovod/blob/master/examples/keras_mnist.py
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Scaling TensorFlow using Horovod on Theta: 
One worker per node, batch size = 512

AlexNet ResNet-50 Inception V3
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Communication overhead in Horovod

• The communication time increases as 
the number of nodes increases and 
becomes nearly identical to the total 
elapse time at large scale 

• The compute operations and reduction 
operations on different layers are 
independent from each other, 

• Reduction operations and compute 
operations are executed concurrently 
through creating communication helper 
threads. 

Total wall time and communication time for 
training of 60 steps
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Communication overhead in Horovod

• The dominant collective MPI routines are MPI Allreduce, MPI Gatherv, MPI Gather.
• The majority of the communication is spent on large message (10-100MB) reduction.
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Horovod tensor fusion

Aggregated training throughput of TensorFlow for 
different fusion thresholds on 128 KNL nodes. 

MPI Allreduce messages size increases as 
fusion threshold increases (ResNet50, 
batch size=512, 60 batches): only those 
taking more than 1% of the total allreduce
time are listed 

To avoid the latency for small message size reduction, Horovod adapts a tensor fusion approach, 
where several small tensors are fused into a bigger buffer before executing reduction. 
Fusion threshold sets the buffer size.
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Horovod tensor fusion
FUSION_CYCLE_TIME (default: 3.5ms)

AlexNet (16 KNL) Inception3 (16 KNL)ResNet50 (16 KNL)

The runtime is not sensitive with respect to the changing of FUSION_CYCLE_TIME
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Tips for data management in data parallel training
• Preprocess the raw data before the training and perform training on preprocessed data. 
• Save the dataset into binary format (e.g., HDF5) instead of text format such as CSV files. 
• Organize the dataset in a reasonable way:

o Avoid using one sample per file which may introduce large overhead from opening/closing 
small files;

o Consider saving several batches of samples into one file (like TF records in TensorFlow) 
and let different workers read different files independently.

• Make sure different workers read different subsets of the dataset, avoiding redundant I/O 
access.

• If the dataset is small which fits into the memory, load the entire dataset at once rather than 
reading them at each epoch on the fly; notice that each node on Theta has 192 GB DDR4 and 
16 GB MCDRAM.

• If the dataset is large, consider prefetching the data from the disk using asynchronous I/O to 
overlap I/O and compute. 

• Consider use node local SSD storage.
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Examples /projects/SDL_Workshop/training/DeepLearningFrameworks

MNIST examples:
– keras_mnist.py
– tensorflow_mnist.py
– pytorch_mnist.py
ImageNet examples:
– keras_imagenet_resnet50.py 
– pytorch_imagenet_resnet50.py 
– tensorflow_synthetic_benchmark.py
These examples were created based on https://github.com/horovod/horovod/tree/master/examples. 
The original examples from Horovod are assumed to be run on GPU. I modified them to be able to run on CPUs.
Submission scripts:
The submission scripts are for Theta.Cooley @ ALCF. submissions/theta/qsub_*.sh. submissions/cooley/qsub_*.sh
Running the examples
qsub -A SDL_Workshop -q training -t 1:00:00 -n 4 submissions/theta/qsub_keras_mnist.py
modify -n and -t to run on different number of nodes with different walltime.
We assume one worker per node in all the cases. Modify PROC_PER_NODE and num_intra, num_threads accordingly if 
you want to set more than one workers per node.

https://github.com/horovod/horovod/tree/master/examples
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Visualization with Tensorboard

Read log files through ssh tunneling
(1) SSH tunnel to Theta

ssh -XL 16006:127.0.0.1:6006 
user@theta.alcf.anl.gov

(2) Run tensorboard on Theta

> module load tensorboard

> tensorboard --logdir DIR

(3) Open browser from local machine: 
https://localhost:16006

https://www.datacamp.com/community/tutorials/tensorboard-tutorial

Interactive job controlling through Tensorboard is not supported on Theta yet. 
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Tracing profile
import tensorflow as tf
from tensorflow.python.client import timeline
import sys
a = tf.random_normal([2000, 5000])
b = tf.random_normal([5000, 1000])
res = tf.matmul(a, b)
sess = tf.Session(config=tf.ConfigProto(\

inter_op_parallelism_threads=1,\
intra_op_parallelism_threads=1 ))

# add additional options to trace the session execution
options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
sess.run(res, options=options, run_metadata=run_metadata)
# Create the Timeline object, and write it to a json file
fetched_timeline = timeline.Timeline(run_metadata.step_stats)
chrome_trace = fetched_timeline.generate_chrome_trace_format()
f=open('timeline_01.json', ’w’); f.write(chrome_trace);f.close()

Open timeline_01.json using Chrome. 
Go to the page chrome://tracing. ”Load” the JSON file. 

Num_Inter =1 

Num_Inter =2 
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Tracing profile (AlexNet)

Concurrent execution 
of TF operations

Flat profiling of TF 
operations
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VTune profiling 
source /opt/intel/vtune_amplifier/amplxe-vars.sh
aprun -n … -e OMP_NUM_THREADS=128 \

-e LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/vtune_amplifier/lib64 \
ampxle-cl -collect advanced-hotspots -r output_dir python script.py

The python modules are compiled using -g flag. Therefore, the user could trace the source file in Vtune. 

Remember to set LD_LIBRARY_PATH, 
Put vtune library at the end!! Otherwise, it 
might complaint about the GLIBCXX version.
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MKL-DNN VERBOSE output

#verbose,stage,primitive-kind,primitive-implementation,propagation-kind,input/output,auxiliary information,time
mkldnn_verbose,create,convolution,jit:avx512_common,forward_training,fsrc:nchw fwei:Ohwi16o fbia:x fdst:nChw16c,a\
lg:convolution_direct,mb256_g1ic3oc64_ih227oh55kh11sh4dh0ph0_iw227ow55kw11sw4dw0pw0,3.73804
mkldnn_verbose,create,reorder,jit:uni,undef,in:f32_hwio out:f32_Ohwi16o,num:1,64x3x11x11,9.52808
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_hwio out:f32_Ohwi16o,num:1,64x3x11x11,107.507

Time spent on different types of MKL-DNN functions. Convolution is compute bound, others are 
memory bandwidth bound.

aprun … -e MKLDNN_VERBOSE=2
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Science use case 1 - Galaxy classification using 
modified Xception model

~ 5 Hrs using 1 K80 GPU to 8 mins using 64 K80 
GPUs using computing resource from Cooley @ ALCF

Galaxy images

A Khan et al, Physics Letters B, 793, 70-77 (2019)

See Elise Jennings talk for more details. 
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Science use case 2 - Brain Mapping: reconstruction of 
brain cells from volume electron microscopy data

Scaling results in terms of throughput Scaling results in terms of training 
efficiency (measured by time needed for 
the training to reach to certain accuracy) 

W. Dong et al, arXiv:1905.06236 [cs.DC]

Work done on 
Theta @ ALCF 
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Thank you!

huihuo.zheng@anl.gov


