
www.anl.gov

ALCF datascience frameworks:
TensorFlow, PyTorch, Keras, and

Horovod
Huihuo Zheng

Data science group
October 1, 2019

huihuo.zheng@anl.gov

Argonne Leadership Computing Facility2

Outline

• Using the datascience modules on Theta

• How we built TensorFlow, PyTorch, Keras, and Horovod

• Best practices for using the modules / installing other python packages

• Optimal setup for efficient single node performance (TensorFlow)

• Data parallel training with Horovod

• Visualization through Tensorboard remotely

• Profiling: timeline trace, Vtune, MKL-DNN verbose output

Argonne Leadership Computing Facility3

“datascience” modules on Theta

• Compiled using GCC/8.2.0 with “–g” flag and AVX512, specifically

optimized for KNL

• Based on intelpython 3.6, not compatible with other python modules, such

as miniconda, cray-python, alcf-python (we still have old

datascience/intelpython35/* modules available; but we will migrate to

intelpython36)

• PyTorch and TensorFlow are linked to MKL and MKL-DNN

• Horovod, mpi4py, and h5py are linked to Cray MPI

• H5py is with parallel HDF5 support;

[xxx@thetalogin4 ~]$ module avail datascience

-------------- /soft/environment/modules/modulefiles ---------------
datascience/horovod-0.16.1 datascience/tensorflow-1.13
datascience/keras-2.3.0 datascience/tensorflow-1.14
datascience/pytorch-1.1 datascience/tensorflow-2.0-rc2
datascience/tensorboard datascience/mpi4py-3.0.2
Datascience/h5py-2.9.0

All the libraries are dynamically linked, be careful of your LD_LIBRARY_PATH, PYTHONPATH.

Argonne Leadership Computing Facility4

How to use the “datascience” modules
• module load datascience/tensorflow-1.14 (horovod and intelpython36

are loaded automatically)
• The packages do NOT run directly on login nodes or mom nodes.

#!/bin/bash
#COBALT -A project
#COBALT -n node
#COBALT -q default --attrs mcdram=cache:numa=quad
module load datascience/tensorflow-1.14 datascience/keras-2.3.0
aprun -n nproc -N nproc_per_node -cc depth -j 2 python script

• Run with qsub script.sh, or on mom node interactively through aprun.

Illegal instruction!

• Download/transfer the datasets to Theta first; the compute nodes do not
have access to external internet.

Argonne Leadership Computing Facility5

How to use the “datascience” modules
• If your applications need other custom python packages, pip install the

package to a separate directory and add the path to your PYTHONPATH:

> module load intelpython36 gcc/8.2.0

> pip install package_name –target=/path_to_install

> export PYTHONPATH=/path_to_install/:$PYTHONPATH

• Or you could try to build your own package as follows:
> module load intelpython36 gcc/8.2.0

> python setup.py build

> python setup.py install --prefix=/path_to_install/

> export PYTHONPATH=/path_to_install/lib/python3.6/site-packages/:$PYTHONPATH

Remember to add “export PYTHONPATH=extra_python_paths:$PYTHONPATH” in
your submission scripts.

• You don’t need to use virtual environment. If you use that, be careful not

to override the TensorFlow, PyTorch and Horovod packages.

Argonne Leadership Computing Facility6

How to use the “datascience modules”
• If you use mpi4py or h5py, load other modules first, and load

h5py/mpi4py AT THE END to override the h5py and mpi4py packages
in other modules

module load intelpython36
…
module load XXX
module load h5py

• Avoid installing packages to .local/lib/python3.6/site-packages (never do
pip install XXX --user)

• If you want to link python functions to your simulation code, remember to
use dynamic linking when compiling your application by adding ”-dynamic”
to the compiler flag; by default, Theta uses static linking.

• Let us know if you encounter any issues support@alcf.anl.gov.

mailto:support@alcf.anl.gov

Argonne Leadership Computing Facility7

Optimal setups for best
performance on KNL
TensorFlow CNN benchmarks
https://github.com/tensorflow/benchmarks
ImageNet models: AlexNet, ResNet50, Inception V3

H. Zheng, E. Jennings, W. Scullin, V. Mrovozov, and V. Vishwanath, Performance evaluation and
analysis of TensorFlow on Cray XC40, submitted to SC19 Deep Learning on HPC workshop

https://github.com/tensorflow/benchmarks

Argonne Leadership Computing Facility8

TensorFlow internal threading setup (For CPUs)
- intra_op_parallelism_threads: this sets the number of threads available in the pool. The thread

pool is divided to different thread teams at runtime for executing different operations concurrently;
- inter_op_parallelism_threads: this sets the maximum number of thread teams which perform

different TensorFlow operations concurrently.
Threading setup in the python script

config = tf.ConfigProto()
config.intra_op_parallelism_threads = num_intra
config.inter_op_parallelism_threads = num_inter
tf.Session(config=config)

Optimal setup on Theta based on benchmarks
§ inter_op_parallelism_threads = 1, 2
§ Intra_op_parallelism_threads =

OMP_NUM_THREADS
§ Use aprun -e OMP_NUM_THREADS=.. to setup

threads Training throughput of AlexNet, ResNet50 and Inception V3
for different inter and intra threading setups (batch size =
512). In all the cases, we set OMP NUM THREADS = num
intra.

Argonne Leadership Computing Facility9

TensorFlow internal threading setup
Timeline tracing of a single training steps

• Blocks of different colors correspond to execution
of different operations.

• Different rows correspond to operations executed
on different thread teams.

• At specific time slice, the number of operations
executed concurrently is less than num_inter

Number of operators executed at different
timestamps at a training step for AlexNet,
ResNet50, and Inception V3.

Argonne Leadership Computing Facility10

KMP_BLOCKTIME

OpenMP environmental variables

The default value in MKL is 200ms, which was not
optimal in our testing. The optimal is 0.
You could set KMP_BLOCKTIME in two ways:
• Parse through aprun:

aprun ... -e KMP_BLOCKTIME=0 …
• Set inside your python script:

os.environ[‘KMP_BLOCKTIME’]=0

KMP_AFFINITY

Always specify “aprun … -cc depth”

Optimal value: granularity=fine,verbose,compact,1,0

KMP_BLOCKTIME sets the time (in ms) that a thread shall wait before
sleeping, after completing the execution of a parallel region.

Argonne Leadership Computing Facility11

OpenMP thread scaling

Throughput scaling of TensorFlow on a single node through OpenMP. For the cases of
1-64 threads, one thread per core was set; for the cases of 128 and 256 threads, 2 and
4 hyper threads per core were set respectively. Dash curves indicate ideal scaling.

Two hyper threads per core
gives optimal performance.

aprun … -j 2 –e
OMP_NUM_THREADS=128 …

Argonne Leadership Computing Facility12

Memory mode and batch size

Training throughput on different memory modes for ImageNet models: AlexNet, ResNet50,
and Inception V3. Some Flat(HBM) bars are omitted as the memory footprint is larger than
16GB - the capacity of MCDRAM.

• Always use Cache mode to take
advantage of high bandwidth of
MCDRAM (16 GB) and high memory
capacity of DDR4 (192 GB).

Cache – MCDRAM serves as a cache to DDR4
Flat(HBM) – memory is allocated in MCDRAM
Flat(DDR) – memory is allocated in in DDR4
Flat(HBMp) – memory is allocated in MCDRAM
first and then spread to DDR4

Argonne Leadership Computing Facility13

Flat profiling from timeline trace

• A large portion of the execution time spent on
the two math libraries, MKL-DNN and Eigen.

• Mkl* operations take 64%, 94% and 93% of
the total time in AlexNet, ResNet50 and
Inception V3 respectively.

Argonne Leadership Computing Facility14

Performance of CPUs and GPUs for deep learning

The performance of KNL is about 1/10 – 1/5 of the performance of V100.

Argonne Leadership Computing Facility15

Data parallel training through Horovod

Examples
/projects/SDL_Workshop/DeepLearningFrameworks

Argonne Leadership Computing Facility16

Need for distributed (parallel) training on HPC
“Since 2012, the amount of compute used in the largest AI training runs has been increasing
exponentially with a 3.5 month doubling time (by comparison, Moore’s Law had an 18 month
doubling period).” https://openai.com/blog/ai-and-compute/

Eras:
• Before 2012 …

• 2012 – 2014: single to couple GPUs

• 2014 – 2016: 10 – 100 GPUs

• 2016 – 2017: large batch size training,

architecture search, special hardware

(etc, TPU)

Finishing a 90-epoch ImageNet-1k
training with ResNet-50 on a NVIDIA M40
GPU takes 14 days. (1018 SP Flops)

~1m – 1 hours on ALCF Theta (~10
petaFlops) if it “scales ideally”.

Argonne Leadership Computing Facility17

Need for distributed (parallel) training on HPC

• Increase of model complexity leads to dramatic

increase of computation;

• Increase of the amount of dataset makes

sequentially scanning the whole dataset

increasingly impossible;

• Coupling of deep learning to traditional HPC

simulations might require distributed inference.

Argonne Leadership Computing Facility18

Parallelization schemes for distributed learning
Worker 4

Worker 3 Worker 2

Worker 1

Worker 1 Worker 4 Worker N

…

Model parallelism Data parallelism

Argonne Leadership Computing Facility19

Deep dive on model parallelism (Horovod)

Stochastic Gradient Descent (SGD) update

Dataset Weight

Batch

Minimizing the loss:

Model is updated at each step. It scans through
the entire dataset once at one epoch.

• Model is replicated on all the workers;
• One batch B is divided into many sub batches

!" feed to different workers
• Gradients are averaged at each training step.

L

w

https://eng.uber.com/horovod/

#$
#% =

1
()

*+,

- #$*
#% = 1

.!)
"+,

/

)
*∈12

#$*
#% .

Argonne Leadership Computing Facility20

Scaling the batch size

We suggest to use weak scaling to maintain high throughput per node.

Scaling Global batch size (B) Local batch size (bw)
Strong scaling B0 B0/N
Weak scaling N*B0 B0

Square root scaling ! ∗B0 B0/ !

Different ways of scaling in data parallel training
(suppose the original batch size is B0)

Argonne Leadership Computing Facility21

Linear scaling rule
When the batch size is multiplied by k, multiply the learning rate by k.

• k steps with learning rate ! and batch size "

• Single step with new learning rate !̂ and large
batch ∪% &% (batch size '")

If ∇) *, ,-.% ∼ ∇) *, ,- we have, 0,-.1 ∼ ,-.2.
Ideally, large batch training with a scaled learning
rate will reach the similar minimum with fewer
steps.

The optimal learning for a range of batch sizes, for
an SVHN classifier trained with SGD

S. McCandlish, J. Kaplan, D. Amodei, arXiv:1812.06162

Argonne Leadership Computing Facility22

Challenges with large batch training
• Convergence issue: at the initial stages of training, the model is far

away from optimal solution ∇" #,%&'(∼ ∇" #,%& breaks down. Training
is not stable with large learning rate in the beginning;

• Generalization gap: large batch size training tends to be trapped at
local minimum with lower testing accuracy (generalize worse).

“... large-batch ... converge to sharp minimizers of the training
function ... In contrast, small-batch methods converge to flat
minimizers”

Performance of small-batch (SB) and large-batch
(LB) variants of ADAM on the 6 networks

Keskar et al, arXiv:1609.04836

Argonne Leadership Computing Facility23

Challenges with large batch training
Solution: using warm up steps
• Use a smaller learning rate at the initial stage of training (couple

epochs), and gradually increase to "̂ = $"
• Use linear scaling of learning rate ("̂ = $")

No warm up Gradual warm up This scheme works up to
8k batch size

P. Goyal et al,arXiv: 1706.02677

ResNet-50 training

Argonne Leadership Computing Facility24

Challenges with large batch training

Predicted critical maximum batch
size beyond which the model
does not perform well.

S. McCandlish, J. Kaplan, D. Amodei,
arXiv:1812.06162

Maximum batch size places a strong
scaling limit to data parallel:

of workers < maximum batch size

Argonne Leadership Computing Facility25

Data parallel training with Horovod

• Import Horovod modules and initialize horovod;
• Wrap optimizer using hvd.DistributedOptimizer: scale the

learning rate by number of workers;
• Broadcast the weights from worker 0 to all the workers;
• Let worker 0 write check point files
• Data loading:

• Option 1. All the workers scan through the whole dataset in
a random way (make sure that different worker have
different random seeds);

• Option 2. Divide the dataset and each worker only scans
through a subset of dataset.

How to change a series code into a data parallel code:

https://eng.uber.com/horovod/

Argonne Leadership Computing Facility26

TensorFlow with Horovod
import tensorflow as tf
import horovod.tensorflow as hvd
layers = tf.contrib.layers
learn = tf.contrib.learn
def main():

Horovod: initialize Horovod.
hvd.init()
Download and load MNIST dataset.
mnist = learn.datasets.mnist.read_data_sets('MNIST-data-%d' % hvd.rank())
Horovod: adjust learning rate based on number of GPUs.
opt = tf.train.RMSPropOptimizer(0.001 * hvd.size())
Horovod: add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)
hooks = [

hvd.BroadcastGlobalVariablesHook(0),
tf.train.StopAtStepHook(last_step=20000 // hvd.size()),
tf.train.LoggingTensorHook(tensors={'step': global_step, 'loss': loss},

every_n_iter=10),
]

checkpoint_dir = './checkpoints' if hvd.rank() == 0 else None
with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,

hooks=hooks,
config=config) as mon_sess

https://github.com/uber/horovod/blob/master/examples/tensorflow_mnist.py

Argonne Leadership Computing Facility27

PyTorch with Horovod
#…
import torch.nn as nn
import horovod.torch as hvd
hvd.init()
train_dataset = datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,

transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))

]))
train_sampler = torch.utils.data.distributed.DistributedSampler(

train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.DataLoader(

train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
Horovod: broadcast parameters.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
Horovod: scale learning rate by the number of GPUs.
optimizer = optim.SGD(model.parameters(), lr=args.lr * hvd.size(),

momentum=args.momentum)
Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(

optimizer, named_parameters=model.named_parameters())

https://github.com/uber/horovod/blob/master/examples/pytorch_mnist.py

Argonne Leadership Computing Facility28

Keras with Horovod
import keras
import tensorflow as tf
import horovod.keras as hvd
Horovod: initialize Horovod.
hvd.init()
Horovod: adjust learning rate based on number of GPUs.
opt = keras.optimizers.Adadelta(1.0 * hvd.size())
Horovod: add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt)
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=opt,
metrics=['accuracy'])

callbacks = [
Horovod: broadcast initial variable states from rank 0 to all other processes.
hvd.callbacks.BroadcastGlobalVariablesCallback(0),

]
Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them.
if hvd.rank() == 0:

callbacks.append(keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5'))
model.fit(x_train, y_train, batch_size=batch_size,

callbacks=callbacks,
epochs=epochs,
verbose=1, validation_data=(x_test, y_test))

https://github.com/uber/horovod/blob/master/examples/keras_mnist.py

Argonne Leadership Computing Facility29

Scaling TensorFlow using Horovod on Theta:
One worker per node, batch size = 512

AlexNet ResNet-50 Inception V3

Argonne Leadership Computing Facility30

Communication overhead in Horovod

• The communication time increases as
the number of nodes increases and
becomes nearly identical to the total
elapse time at large scale

• The compute operations and reduction
operations on different layers are
independent from each other,

• Reduction operations and compute
operations are executed concurrently
through creating communication helper
threads.

Total wall time and communication time for
training of 60 steps

Argonne Leadership Computing Facility31

Communication overhead in Horovod

• The dominant collective MPI routines are MPI Allreduce, MPI Gatherv, MPI Gather.
• The majority of the communication is spent on large message (10-100MB) reduction.

Argonne Leadership Computing Facility32

Horovod tensor fusion

Aggregated training throughput of TensorFlow for
different fusion thresholds on 128 KNL nodes.

MPI Allreduce messages size increases as
fusion threshold increases (ResNet50,
batch size=512, 60 batches): only those
taking more than 1% of the total allreduce
time are listed

To avoid the latency for small message size reduction, Horovod adapts a tensor fusion approach,
where several small tensors are fused into a bigger buffer before executing reduction.
Fusion threshold sets the buffer size.

Argonne Leadership Computing Facility33

Horovod tensor fusion
FUSION_CYCLE_TIME (default: 3.5ms)

AlexNet (16 KNL) Inception3 (16 KNL)ResNet50 (16 KNL)

The runtime is not sensitive with respect to the changing of FUSION_CYCLE_TIME

Argonne Leadership Computing Facility34

Tips for data management in data parallel training
• Preprocess the raw data before the training and perform training on preprocessed data.
• Save the dataset into binary format (e.g., HDF5) instead of text format such as CSV files.
• Organize the dataset in a reasonable way:

o Avoid using one sample per file which may introduce large overhead from opening/closing
small files;

o Consider saving several batches of samples into one file (like TF records in TensorFlow)
and let different workers read different files independently.

• Make sure different workers read different subsets of the dataset, avoiding redundant I/O
access.

• If the dataset is small which fits into the memory, load the entire dataset at once rather than
reading them at each epoch on the fly; notice that each node on Theta has 192 GB DDR4 and
16 GB MCDRAM.

• If the dataset is large, consider prefetching the data from the disk using asynchronous I/O to
overlap I/O and compute.

• Consider use node local SSD storage.

Argonne Leadership Computing Facility35

Examples /projects/SDL_Workshop/training/DeepLearningFrameworks

MNIST examples:
– keras_mnist.py
– tensorflow_mnist.py
– pytorch_mnist.py
ImageNet examples:
– keras_imagenet_resnet50.py
– pytorch_imagenet_resnet50.py
– tensorflow_synthetic_benchmark.py
These examples were created based on https://github.com/horovod/horovod/tree/master/examples.
The original examples from Horovod are assumed to be run on GPU. I modified them to be able to run on CPUs.
Submission scripts:
The submission scripts are for Theta.Cooley @ ALCF. submissions/theta/qsub_*.sh. submissions/cooley/qsub_*.sh
Running the examples
qsub -A SDL_Workshop -q training -t 1:00:00 -n 4 submissions/theta/qsub_keras_mnist.py
modify -n and -t to run on different number of nodes with different walltime.
We assume one worker per node in all the cases. Modify PROC_PER_NODE and num_intra, num_threads accordingly if
you want to set more than one workers per node.

https://github.com/horovod/horovod/tree/master/examples

Argonne Leadership Computing Facility36

Visualization with Tensorboard

Read log files through ssh tunneling
(1) SSH tunnel to Theta

ssh -XL 16006:127.0.0.1:6006
user@theta.alcf.anl.gov

(2) Run tensorboard on Theta

> module load tensorboard

> tensorboard --logdir DIR

(3) Open browser from local machine:
https://localhost:16006

https://www.datacamp.com/community/tutorials/tensorboard-tutorial

Interactive job controlling through Tensorboard is not supported on Theta yet.

Argonne Leadership Computing Facility37

Visualization with Tensorboard

Read log files through ssh tunneling
(1) SSH tunnel to Theta

ssh -XL 16006:127.0.0.1:6006
user@theta.alcf.anl.gov

(2) Run tensorboard on Theta

> module load tensorboard

> tensorboard --logdir DIR

(3) Open browser from local machine:
https://localhost:16006

https://www.datacamp.com/community/tutorials/tensorboard-tutorial

Interactive job controlling through Tensorboard is not supported on Theta yet.

Argonne Leadership Computing Facility38

Tracing profile
import tensorflow as tf
from tensorflow.python.client import timeline
import sys
a = tf.random_normal([2000, 5000])
b = tf.random_normal([5000, 1000])
res = tf.matmul(a, b)
sess = tf.Session(config=tf.ConfigProto(\

inter_op_parallelism_threads=1,\
intra_op_parallelism_threads=1))

add additional options to trace the session execution
options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
sess.run(res, options=options, run_metadata=run_metadata)
Create the Timeline object, and write it to a json file
fetched_timeline = timeline.Timeline(run_metadata.step_stats)
chrome_trace = fetched_timeline.generate_chrome_trace_format()
f=open('timeline_01.json', ’w’); f.write(chrome_trace);f.close()

Open timeline_01.json using Chrome.
Go to the page chrome://tracing. ”Load” the JSON file.

Num_Inter =1

Num_Inter =2

Argonne Leadership Computing Facility39

Tracing profile (AlexNet)

Concurrent execution
of TF operations

Flat profiling of TF
operations

Argonne Leadership Computing Facility40

VTune profiling
source /opt/intel/vtune_amplifier/amplxe-vars.sh
aprun -n … -e OMP_NUM_THREADS=128 \

-e LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/vtune_amplifier/lib64 \
ampxle-cl -collect advanced-hotspots -r output_dir python script.py

The python modules are compiled using -g flag. Therefore, the user could trace the source file in Vtune.

Remember to set LD_LIBRARY_PATH,
Put vtune library at the end!! Otherwise, it
might complaint about the GLIBCXX version.

Argonne Leadership Computing Facility41

MKL-DNN VERBOSE output

#verbose,stage,primitive-kind,primitive-implementation,propagation-kind,input/output,auxiliary information,time
mkldnn_verbose,create,convolution,jit:avx512_common,forward_training,fsrc:nchw fwei:Ohwi16o fbia:x fdst:nChw16c,a\
lg:convolution_direct,mb256_g1ic3oc64_ih227oh55kh11sh4dh0ph0_iw227ow55kw11sw4dw0pw0,3.73804
mkldnn_verbose,create,reorder,jit:uni,undef,in:f32_hwio out:f32_Ohwi16o,num:1,64x3x11x11,9.52808
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_hwio out:f32_Ohwi16o,num:1,64x3x11x11,107.507

Time spent on different types of MKL-DNN functions. Convolution is compute bound, others are
memory bandwidth bound.

aprun … -e MKLDNN_VERBOSE=2

Argonne Leadership Computing Facility42

Science use case 1 - Galaxy classification using
modified Xception model

~ 5 Hrs using 1 K80 GPU to 8 mins using 64 K80
GPUs using computing resource from Cooley @ ALCF

Galaxy images

A Khan et al, Physics Letters B, 793, 70-77 (2019)

See Elise Jennings talk for more details.

Argonne Leadership Computing Facility43

Science use case 2 - Brain Mapping: reconstruction of
brain cells from volume electron microscopy data

Scaling results in terms of throughput Scaling results in terms of training
efficiency (measured by time needed for
the training to reach to certain accuracy)

W. Dong et al, arXiv:1905.06236 [cs.DC]

Work done on
Theta @ ALCF

Argonne Leadership Computing Facility44

Thank you!

huihuo.zheng@anl.gov

