OPENMP WORKSHOP Argonne &

NATIONAL LABORATORY

QUICK OVERVIEW OF QpenMP

OPENMP : .
Enabling HPC since 1997

JOSE MONSALVE

April 26t 2019 — Chicago IL

OVERVIEW
An introduction to OpenMP

1.OpenMP Programming model
— Directives and clauses

2.0penMP Memory Model
— Directives and clauses

3. Tasking Model

Argonne &

THE OPENMP PROGRAMMING MODEL

; - DEPARTMENT OF _ Argonne National Laboratory is a I | I l
ENERG U.S. Department of Energy laboratory r O e
managed by UChicago Argonne, LLC.

NATIONAL LABORATORY

FORK AND JOIN MODEL

Parallel regions

Execution starts with a single thread.

#pragma omp parallel spanws multiple threads

At the end of the parallel region execution
returns to a single thread (Barrier)

4 Argonne &

FORK AND JOIN MODEL

Definitions of threads There is always a master threads

e —

User controls code and data distribution

OMP_NUM_THREADS environmental var

The number of threads can be controlled /
omp_set_num_threads() API call

num_threads() clause

5 Argonne &

REVIEW OF OPENMP DIRECTIVES

; - DEPARTMENT OF _ Argonne National Laboratory is a I | I l
ENERG U.S. Department of Energy laboratory r O e
managed by UChicago Argonne, LLC.

NATIONAL LABORATORY

FORK AND JOIN MODEL

Parallel directive .+ Same code is executed by all

the threads

 Each thread has its own
identifier

- =« There s private and shared

memory

 Unless nowait clause is used,
there is a barrier at the end of
the parallel region

71 #pragma omp parallel

%3 printf("Hello, I am %d\n",omp get thread num());

7 Argonne &

FORK AND JOIN MODEL

Master directive

« All the threads execute the
parallel region
- - * Butonly the master threads
execute line 6
 There is no barrier at the end

of the master region
#pragma omp parallel

{

1

2

3 printf("Hello, I am %d\n",omp get thread num());
4 #pra-gma omp master

5 {
6

7

8

master.c

printf("This only once from %d\n",omp get thread num());

file:

@' U.S. DEPARTMENT OF _ Argonne National Laboratory is a

()] U.S. Department of Energy laboratory A

4/ENERGY G5, Feago Apomme.LL . rgonne
NATIONAL LABORATORY

FORK AND JOIN MODEL

Single directive
 All the threads execute the

parallel region

But only the a single threads
execute line 6

It can be a thread different
than the master

 Unless nowait clause, there is

1 #pragma omp parallel a barrier after the single region
v 2 A
3 3 printf("Hello, I am %d\n",omp get thread num());
'§°4 #pra-gma omp single - B
n 5 {
<6 printf("This only once from %d\n",omp get thread num());
&7 }
8}

@' U.S. DEPARTMENT OF _ Argonne National Laboratory Is a

()] U.S. Department of Energy laboratory A

4/ENERGY G5, Feago Apomme.LL . rgonne
NATIONAL LABORATORY

FORK AND JOIN MODEL

Critical directive

critical.c

(V)
|_|
o
U

1
2

-
#pragma omp parallel

{

printf("Hello, I am %d\n",

#pragma omp critical

{

someCriticalWork();

10

« All the threads access the
critical region at some point

« But only a single threads at a
time executes the thread
unsafe work at line 5

« Guarantees mutual exclusion

omp_get thread num());

Argonne &

FORK AND JOIN MODEL

Barrier directive
» Global synchronization of threads
« All the threads executed all the
work before the barrier, and wait
- - for everyone to reach it.
« All “hi from” messages should be

printed before all “bye from”

meSSages
v 1 #pragma omp parallel
3124
gl K} printf("Hi from %d\n", omp get thread num());
S #pragma omp barrier
o5 printf("Bye from %d\n", omp get thread num());
i

11 Argonne &

FORK AND JOIN MODEL

Parallel for/do loop directive
Iteration space:

 Loop is executed in
parallel

« Each thread gets a chunk
of the iteration space

 How to distribute the

iterations?
éll #pragma omp parallel for
w2 for (int i = 0;|1i < 6;| i++)
73 {
4 printf("Hi from %d iteration %d \n", omp get thread num(), 1i);
i)
i

‘ U.S. DEPARTMENT OF _ Argonne National Laboratory is a

B U.S. Department of Energy laboratory 1 2 A

\ZJENERGY ...2:5e Feage Argonne. LLC . rgonne
NATIONAL LABORATORY

FORK AND JOIN MODEL

Parallel for/do loop directive
Iteration space:

 Loop is executed in
parallel

« Each thread gets a chunk
of the iteration space

 How to distribute the
iterations?

K * A: schedule() clause
Sll #pragma omp parallel for

w2 for (int i = 0;|1i < 6;| i++)

73 {

4 printf("Hi from %d iteration %d \n", omp get thread num(), 1i);
25}

=

(@ENERGY L i 13 Argonne &

OPENMP MEMORY MODEL AND CLAUSES

S. DEPARTMENT OF _ Argonne National Laboratory is a
ENERG U.S. Department of Energy laboratory r I l I l
managed by UChicago Argonne, LLC.

NATIONAL LABORATORY

THE OPENMP MEMORY MODEL

Global shared vs thread local memory

Thread Local Memory Space

Thread Local Memory Space
e e ——

Thread Local Memory Space
— /

{hread Local Memory Space Seen only by itself
——<__ Private to each thread

Global Shared Memory Space
~_Seen by all threads

18 Argonne &

OPENMP MEMORY CLAUSES

Shared() clause

X=5

Thread Local Memory Space

./)

Thread Local Memory Space

/

\S y 4
Thre=d Local Memory Space

N/

AN /

\Thkanll_ocal Memory Space /

¢ file: parallel_share.c
lint x = 5;
2 #pragma omp parallel shared(x)

e

34

Global Shared Memory Space

G775, US. DEPARTMENT OF _ Argonne National Laboratory is a
g] ENERGY U.S. Department of Energy laboratory
s EmINERINI T managed by uch icago Argonne, LLC 4

19

4 printf("%d\n", x);
5%

Argonne &

OPENMP MEMORY CLAUSES

Private() clause

Thread Local Memory Space

X=5 | ——————
= x-7

Thread Local Memory Space

o

Thread Local Memory Space

= ??
/ K h
N’

file: parallel private.c

Thread Local Memory Space
lint x = 5;
_ 2 #pragma omp parallel private(x)
=77
e - I
\

4 printf("%d\n", x);

Global Shared Memory Space 5}

20 Argonne &

OPENMP MEMORY CLAUSES

firstprivate() clause

X=5

Thread Local Memory Space

’ &= x-5 |)

Thread Local Memory Space

(- =8

Thread Local Memory Space

X=5

e
A\

file: parallel firstprivate.c

lint x = 5;
2 #pragma omp parallel firstprivate(x)

34

Thread Local Memory Space
a - I
"

Global Shared Memory Space

21

4
5}

print("%d\n", x);

Argonne &

OPENMP MEMORY CLAUSES

reduction() clause

Thread Local Memory Space

-

X = N*(N-1)/2 /%

Thread Local Memory Space

C

\ Thread Local Memory Space

_ ————————————————— |
X=2

/ = P ERNRIZ =

>
N

ile: parallel for_reduction.c

lint x = 5;
2 #pragma omp parallel for reduction(+:x)

3for (int i = 0; i < N; i ++) {

Global Shared Memory Space

22

Thread Local Memory Space r
e
\ g

4 X = 1i;
5 print("%d\n", x);
6}

Argonne &

OPENMP MEMORY CLAUSES

Atomic Directive

Thread Local Memory Space

: &% h

Thread Local Memory Space

//
77
Mcal Memory Space

AN /[/

\ThMcal Memory Space /

A
Global Shared Memory Space

23

file: parallel atomic.c
lint i = 0;

2 #pragma omp parallel
34

4 #pragma omp atomic

5 i++;

6}

7 printf("i = %d\n", 1i);

Argonne &

TASKING

DEPARTMENT OF _ Argonne National Laboratory is a
ENERG U.S. Department of Energy laboratory r I l I l
managed by UChicago Argonne, LLC.

NATIONAL LABORATORY

TASKING IN OPENMP

Yet another way of assigning work to threads...

» Before tasking we used worksharing constructs to assign work to
threads:

— For/do loops, sections, single ...
» Tasks allow us to create and queue “work” that threads execute

= Additionally it allows controlling dependencies between different work
tasks

= We use a parallel region to create the threads, and the tasking
constructs to create work and add it into the work queue

@ U.S. DEPARTMENT OF _ Argonne National Laboratory is a

U.S. Department of Energy laboratory 25 A

(ZJENERGY L5 okaiee rgonne
NATIONAL LABORATORY

TASKING MODEL

Task definition

« Atask is an instance of executable
code and its data environment.
« Atask is generated by:
e Task
« Taskloop
 Parallel (implicitly)
 Target (implicitly)
e Teams (implicitly)
« Tasking constructs provide units of
work to a thread for execution.

§71%, U.S. DEPARTMENT OF _ Argonne National Laboratory is a
g @ ENERGY U.S. Department of Energy laboratory
W NG T managed by uch icago Argonne, LLC. 3

Task data environment:

X Y

Task Region (Code):
int x =10;
#pragma omp parallel

inty;
printf("Hi from %d\n", \

#pragma omp task omp_get _thread_num());

inty =x;

printf("Hi from %d\n", \
omp_get _thread_num();

Argonne &

TASKING MODEL

Creation of tasks
file: tasking.c
1 #pragma omp parallel
2 {
3 #pragma omp master
4 for (int i = 0; i < 5; i++) {
5 #pragma omp task
- ¢ {
7 printf("Hi from %d\n", \
8 omp get thread num();
9 }
10 }
11}

Task queue

Note: The number of workers is determined by
the number of threads in the parallel region

27 Argonne &

TASKING MODEL

Oversubscription of tasks

1 #pragma omp parallel

2 {

3 #pragma omp master

4 for (int i = 0; i <<:> i++) {
5 #pragma omp task

- = {

7 printf("Hi from %d\n", \
8 omp_get thread num();
9 }
10}
11}
12

Task queue

: U.S. DEPARTMENT OF _ Argonne National Laboratory is a

7)) U.S. Department of Energy laboratory A

ENERGY managed by UChicago Argonne, LLC. reonne
NATIONAL LABORATORY

TASK DEPENDENCIES

Give order to task execution

file: tasking_depend.c
1 #pragma omp parallel

2
3

0~ o b

9
10
11
12
13
14

{
#pragma

{

omp single

#pragma
{ x

omp task depend(out:x)
= OP1(); }

OP1

#pragma
{vy

omp task depend(in:x) depend(out:y)
= OP2(x); }

oP2

#pragma
{ z

omp task depend(in:x) depend(out:z)
= OP3(x); }

OP3

#pragma

omp task depend(in:z,y)

{ res = OP4(vy,z); }

OP4|

}
}

29

OP1() <
"Z_,/ CA\X "*\Dependent task
\ i
OP2() OP3()
\\1‘ ‘;,/
OP4()

Dependencies guarantees
order between tasks if the
variable belongs to the same
data environment

Argonne &

TASKING MODEL
Terminology

file: tasking_terminology.c

1 #pragma omp task

T1

24

3 for (int i = 0; i < 5; i ++) {

4 #pragma omp task

CHILDREN OF T1

5 {
6 printf("I am a child\n")
7 if (i == 0) {

8 #pragma omp task

DESCENDENT OF T1

9 { printf("I am a descendent\n"); }
10 }
11 }
12}

30

-~ Ss
’ . S
< Sl YRR AN
/ N W \
Y3 ®.‘o ,ﬁ co:] N\ \
RO A \ 1
\ A v NGO ¥ ¥ b
0
INE
Oy
i D eeeseeeessesessmee e i
\ Qi i
b N Sibling tasks
Vo,
=
' CREATE TASK
~» *not dependency

Argonne &

TASKING MODEL
Task Scheduling Points

= Task execution can be suspended and resumed later on.
* This can only happen at certain points called scheduling points.

— Some examples:

suspended Resumed
 Generation of the task gumm———— ,—'“'-\
Taskyield directive U ‘

Taskwait directive

"4

* End of taskgroup directive

ananb »sej

 Implicit and explicit barriers

31 Argonne &

TASKING MODEL
Tied and Untied tasks

file: tasking untied.c
1 #pragma omp task

2 {

3 printf("Hi from %d\n", \
4 omp get thread num());
5 #pragma omp taskyeld

6 printf("Hi from %d\n", \

7 omp_get_thread_num());'

8 }
9 #pragma omp task untied

10 {
11 printf("Hi from %d\n", \
12 omp get thread num());

13 #pragma omp taskyeld
14 printf("Hi from %d\n", \
15 omp _get thread num());
16 }

32

Task queue

Tied: Can be resumed only by the
same thread that suspended it

Untied: Can be resumed by any
thread in the team

Argonne &

TASKING MODEL

Deferred and Undeferred tasks

» Deferring a task means that a task is generated but not executed right away
without suspending the execution of the generating (current) task
— Atask is deferred by default

= A non deferred task suspends the execution of the current task until the
generated task gets executed

1 #pragma omp task
2 {

3 printf("1\n");
4 #pragma omp task

Deferred

5 A

6 printf("2\n");
7 '}

8 printf("3\n");
9}

33

managed by UChicago Argonne, LLC.

1 #pragma omp task

2 {

3 printf("1\n"); Undeferred
4 #pragma omp task if(0)/

5 A

6 printf("2\n");
7 '}

8 printf("3\n");
9}

file: tasking _undeferred.c
Argonne &

TASKING MODEL

Included, merged, and final tasks

* Included task: A task for which execution is sequentially included in the
generating task region.
— Undeferred and executed immediately

= Merged task: A task for which the data environment and Internal Control
Variables is the same as the generating task
— Must be undeferred and included

file: tasking mergeable.c

» Final Task: A task that forces all of its child tasks to become final and
included. Recursively make all descendant tasks included as well
— It does not merge the tasks, unless allowed by each task (i.e. mergeable clause)

34 Argonne &

TASKING MODEL

Final tasks

1 #pragma omp task final(1l)

1 #pragma omp task final(1l) 2 {

24 3 int aNum = 0;

3 int aNum = 0; 4 for (int i = 0; i < N; i ++) {
4 for (int i = 0; i < N; i ++) { 5 int aNum;

5 #pragma omp task private(aNum) 6 aNum = i;

6 { aNum = i; } 7 }

7 } 8 printf("aNum = %d\n", aNum);

8 printf("aNum = %d\n", aNum); 9}

9}

1 #pragma omp task final(1l) 1 #pragma omp task final(1l)

2 { 24

3 int aNum = 0; 3 int aNum = 0;

4 for (int i = 0; i < N; i ++) { 4 for (int i = 0; i < N; i ++) {
5 #pragma omp task private(aNum) mergeable 5 aNum = ij;

6 { aNum = i; } 6 }

7 } 7 printf("aNum = %d\n", aNum);

8 printf("aNum = %d\n", aNum); 8}

9}

U.S. DEPARTMENT OF _ Argonne National Laboratory is a
U.S. Department of Energy laboratory 35 A
ENERGY .2 stilas tomise rgonne
NATIONAL LABORATORY

TASK SYNCHRONIZATION

Taskwait

file: tasking_taskwait.c

1 #pragma omp task

2 {

3 for (int i = 0; i < 4; i ++) {
4 #pragma omp task //Children

5 {

6 printf("Hi there... I'm a child\n");

7 for (int j = 0; j < 2; j++) {

8 #pragma omp task //Descendant

9 {

10 printf("Hi there... I'm a grandchild\n");

11 }

12 }

13) L

14) Taskwait yields the current task to

15 #pragma omp taskwait . .
16 printf("And we're done\n"): wait for the completion of only the

17 } children task

36 Argonne &

TASK SYNCHRONIZATION
Taskgroup

file: tasking_taskgroup.c
1 #pragma omp task

-]
- N~

~

S

2 { ¢ .' '\ \

K N
3 #pragma omp taskgroup I \\
4 g Tas kgroup L W
5 for (int 1 = 0; 1 < 4; i ++) {
6 #pragma omp task //Children I
7 {
8 printf("Hi there... I'm a child\n"); I
9 for (int j = 0; j < 2; j++) { A I
10 #pragma omp task //Descendant V’ v
11 { | |
12 printf("Hi there... I'm a grandchild\n");
14 } .
15 } Taskgroup yields the current task to
16 } . .
17 '} // wWait for all tasks and descendants walt for the Complet|0n Of M
18 } children task and descendants

37 Argonne &

TASK LOOPS
New in OpenMP 4.5

file: tasking_taskloop.c

Parallelizing this loop with tasks y o neme omp paratiel
l for(int i = 0; 1 < N; i++) { 3 #pragma omp taskgroup
c = a1 4 |
c A[1] 17 5 #pragma omp single
3} 6 {
7 int chunk size = M, end chunk;
8 for (int i = 0; i < N; i += chunk_size) ({
1 #pragma omp taskloop grainsize(M) 9 end chunk = (i + chunk size < N) ? i : N;
2 for (j_nt i=0; i<N; 1i ++) { 10 #pragma omp task firstprivate(i, end_chunk)
3 A[i] = i; o {
! 12 for (int j = i; j < end chunk; j++) {
4} Taskloops 13 AL = 3
14 }
15 }
Allows distributing an iteration loop > } }
into multiple tasks 18}
19) No taskloops

38 Argonne &

SUPPORT IN COMPILERS

Implementations are moving fast

OMP Flag Offloading Flag Supported Architectures

GCC -fopenmp -foffload=<arch>=<options> KNL, NVIDIA, soon-AMD

LLVM -fopenmp -fopenmp-target=<arch> NVIDIA
-Xopenmp-target=<options>

IBM XL -gsmp=omp -qoffload NVIDIA

CRAY CCE -homp Not needed NVIDIA

PGI -mp Not supported yet — In progress

Intel -gopenmp -gopenmp-offload=<arch> KNL(MIC)

AMD (aomp) -fopenmp -fopenmp-target=<arch> NVIDIA, AMD

-Xopenmp-target=<options>

. U.S. DEPARTMENT OF _ Argonne National Laboratory is a

4] U.S. Department of Energy laboratory 39 A

\ZJENERGY ...2:5e Veage Araonme, LLC . rgonne
NATIONAL LABORATORY

https://gcc.gnu.org/wiki/Offloading
https://clang.llvm.org/docs/OpenMPSupport.html
https://www.ibm.com/support/knowledgecenter/en/SSXVZZ_16.1.0/com.ibm.xlcpp161.lelinux.doc/compiler_ref/opt_offload.html
https://pubs.cray.com/content/S-2179/8.7/cray-c-and-c++-reference-manual/openmp-overview
https://www.pgroup.com/resources/docs/18.5/x86/pgi-user-guide/index.htm
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-qopenmp-offload-qopenmp-offload
https://github.com/ROCm-Developer-Tools/aomp

THE OPENMP SOLLVE TEAM —
VALIDATION AND VERIFICATION E\(g =

Help us improve the OpenMP Implementations

EXASCALE COMPUTING PROJECT

Contact information:
OPENMP VALIDATION AND :
- | :
VERIFICATION JOse Monsalve (josem@udel.edu)
SWQAroop Pophale (pophaless@ornl.gov)
il . Kyle Friediine (utimatu@udel.edu)
::l:: This project is a collaboration of OSCOr Hernandez (OSCCH’@OI’I’]LQOV)
R . SunIta chandrasekaran (schandra@udel.edu)
QA RIvGE 5 EIAWARE EC'P
E(ié\l: Visit our website
/ -
T https://crpl.cis.udel.edu/ompvvsollve/

Work supported by the U.S. Department of Energy, Office of Science, the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration under
contract number DE-AC05-000R22725.

We also thank all of those who directly or indirectly have help this project.
ENERGY (5 St 40 Argonne &

\\\\\

mailto:josem@udel.edu
mailto:pophaless@ornl.gov
mailto:utimatu@udel.edu
mailto:oscar@ornl.gov
mailto:schandra@udel.edu

