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DPC++ (Data Parallel C++) and SYCL

Overview

« SYCL

« SYCL (pronounced “sickle’”) is a royalty-free, cross-platform abstraction C++ programming model for OpenCL. SYCL
builds on the underlying concepts, portability and efficiency of OpenCL while adding much of the ease of use and
flexibility of single-source C++

» Khronos standard specification
» SYCL is designed to be as close to standard C++ as possible
« Data Parallel C++ (DPC++)
+ Intel interpretation/implementation of the SYCL specification
* Incorporates SYCL 2019 specification and Unified Shared Memory

* Add language or runtime extensions as needed to meet user needs
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Intel oneAPI
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oneAPI is broad-based software ecosystem that works together to
accelerate software on multiple different device architectures

« DPC++ is one component in that ecosystem
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Why SYCL?

Who should listen to this presentation...

You ...

 are creating a greenfield application or complete rewrite and chose C++ as your
base language

» are coming from CUDA or HIP and you want to embrace an open standard
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Overview

/ royalty-free, cross-platform abstraction layer that builds on the \ SYCL

underlying concepts, portability and efficiency of OpenCL that
enables code for heterogeneous processors to be written in a
“single-source” style using completely standard C++. SYCL single-
source programming enables the host and kernel code for an
application to be contained in the same source file, in a type-safe
way and with the simplicity of a cross-platform asynchronous task
graph. SYCL includes templates and generic lambda functions to
enable higher-level application software to be cleanly coded with
optimized acceleration of kernel code across the extensive range of

shipping OpenCL 1.2 implementations.
K -- SYCL Specification 1.2.y

+ standard C++11
* OpenCL 1.2 memory model

» based on OpenCL - reuses the same concepts for definition of the architecture
 platform, device, queue, NDRange, work groups and work items
 this presentation is just scratching the surface of SYCL
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SYCL Ecosystem

SYCL source code

(effort announced by Intel on 2019/01/11)

(non-standard macros required)
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Foreword

« SYCL is based modern C++ (standard C++11)
» We will review C++ concepts and syntax as we go
* You will need a good grasp of certain C++ syntax to understand the code

examples
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Platforms and Devices

» Platforms contain devices
« A host may have multiple platforms
« A platform may have multiple devices
» Platforms are loosely defined as an implementation runtime
» Devices correspond to some hardware that the SYCL code will run on
 Iris/Gen9 nodes
« 3 platforms, each with one device
* Host, CPU, GPU
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Pseudo-code walkthrough

selector = default _selector ()
g = queue(selector)

b = buffer (double, 1000)
g.submit (

FC) A

accessor (b, READ AND WRITE)

a:

K (1) {
a[i]l = a[i] * 2

}

}
)

g.wait_and _throw()
a2 = accessor (b, READ _ONLY)
printf(“%f”, a2[0])
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C++ Review - const

« const has been around in C for many years

 modern C++ compilers are more strict about const correctness

 If your code looks right but you have an odd error about the LHS/lvalue or
RHS/rvalue, could be due to a const correctness issue

const int

file.cpp:40:28: error:. non-const lvalue reference to type
'sycl::device _selector' cannot bind to a temporary of type
'sycl::cpu_selector' sycl::device selector &selector cpu =
sycl::cpu_selector();
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Device Selection

1

SYCL provides the concept of a device selector which is a function that will choose which
device to run on
device selectors select that type of device

sycl::default_selector

« implementation specific method to select a default device
sycl::cpu_selector

» selects the host device

» The host processor runs the OpenCL implementations and is a single or multi-core CPU.
sycl::gpu_selector

» selects a GPU device

» can be used to accelerate a 3D API such as OpenGL or DirectX.
sycl::accelerator_selector

» selects an accelerator device

« communicate with the host processor using a peripheral interconnect such as PCle.
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Device Selection Example

using namespace cl;
sycl::device _selector selector = sycl::gpu selector();

sycl::queue queue(selector);

» This will select a GPU device
» If a GPU device doesn'’t exist, queue creation will fail.
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C++ Review - Template functions

» Template functions similar to Template

classes Device queries using get_info():

° Provide generic types for fUﬂCtiOﬂS DesFriptor in info::device Beturn type
device_type info::device_type
vendor _id cl_uint

template <typename T> void func (T a) max_compute_units cl_uint

{ Tb=a; return; } max_work_item_dimensions cl_uint
func<int>(4): max_work_item_sizes id<3>
max_work_group_size size_t

preferred vector width char

preferred vector width_short

preferred_vector_width_int v

preferred_vector_width_long_long | cl_uint
us '| n g names p ace s y C 1 ; nraforrod vortnar width flnat

template <info::device param> typename info::param traijits<
info::device, param>::type get info() const;

cl uint eu = device.get info<info::device::max _compute units>();
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Tutorial 1

Introduce test platform
Build environment and tools
Options for testing

« Container

« JLSE

First example
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Queue Management

* Queue constructor with the device selector binds to the queue to the device

» can also be initialized with a specific device
» kernels submitted will run asynchronously
« submit - takes a function object to execute

* runs host code portion synchronously

» once kernel submitted to device, code runs asynchronously

 errors during submit() or wait() reported synchronously via exceptions
« errors that occur after kernel submission are reported asynchronously and

require defining an async_handler

* wait_and_throw or throw_asynchronous must be called to run the

handler

* queue object destructors will wait for queued kernels to complete before the

destructor completes
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Queue Management Example

sycl::queue g(selector);

g.submit(...);
g.wait() // discards all exceptions
// gq.wait_and throw();

// implicit synchronization on queue destructor

{

sycl::queue g(selector);

}
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Tutorial 2

* First Kernel
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Kernels

* Three types of kernels

« single_task
* run one instance of the kernel, no local accessors

« parallel_for
* run number of instances based on workgroups and workitem
« number of variants for different types of arguments

« parallel_for_work_group
 allows similar capability as with nd_range
« can run workgroup code that runs only once for the workgroup
« can allocate local memory and private memories
» use parallel_for_work_item within to parallelize over work items
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C++ Review - Templates

» the best (or the worst) thing about C++
 allow creating code that uses a generic type
 Removes the need to write many virtual functions with different types

template <typename 1>
class vec3 {
T val[3];
public:
vec3d (T x, Ty, Tz) {
val[O] = x; val[l] = vy; val[2] = z;
}
s
vec3<double> a(1.60, 2.0, 3.0);
vec3<int> b(1l, 2, 3);
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C++ Review - lambda

* lambda is common in many languages, same concept in C++
» creates an anonymous function that can capture variables in scope
» [capture] (parameters) { body }

 [] capture nothing

« [&] capture by reference

» [=] capture by making a local copy

» [a, &b] capture explicit variables

void func (std::function<void(int)> f) { int x = 6; f(x); }

{

int a = 6;

func([&] (int g){ if (g == a) std::cout << "success”; 1});
}
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Kernel - single task

using namespace cl;

queue.submit(
[&] (sycl::handler &cgh)
{

cgh.single task<class kernell>(
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Kernel - parallel_for

using namespace cl;
sycl::buffer<int, 1> val(sycl::range<1>(100));
queue.submit(

[&] (sycl::handler &cgh)

{

auto a = val.get access<sycl::access::mode::write>(cgh);
cgh.parallel for<class kernel2>(sycl::range<1>(100),

),
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Kernel - parallel_for_work_group

using namespace cCl;
sycl::buffer<int, 1> val(sycl::range<1>(8));
queue.submit(

[&] (sycl::handler &cgh)

{

auto a = val.get access<sycl::access::mode::write>(cgh);
cgh.parallel for_work group<class kernel3>(
sycl::range<1>(2), sycl::range<l>(4),
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Range Operators

SYCL provides seven classes to handle expressing data decomposition
* range, nd_range
* id, item, nd_item
e group, h_item
* range<dimensions>(<size of dimension>)
* range<1>(200)
* range<2>(4, 2)
» id<dimensions> - provides the index into the range
e 1d<1> a; size_ t index = a[0];
e 1d<2> b; size t x = b[O]; size t y = Db[1l];
* nd_range<dimensions>(range<dimension> global size, range<dimension> local_size)
* nd_range<l>(range<1>(256), range<1>(128))
« nd_item<dimensions> - provides index into the nd_range plus more functionality
e nd_item<1l> a;
* size t global index = a.get global id(0);
e size t local _index = a.get local 1id(0);
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Range Example

using namespace cl;

g.submit([&] (sycl::handler &cgh)

{

cgh.parallel for<class kernel>(sycl::range<1>(4096),

[=] (sycl::id<1> x)
{

size t i = x[0];
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Tutorial 3

» Basic parallel _for example
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ND_Range Example

using namespace cl;
sycl:buffer<int, 1> buf(cl::sycl::range<1>(4096));
g.submit([&] (cl::sycl::handler &cgh)
{
auto acc = buf.get access<sycl::access::mode::discard write>(cgh);
cgh.parallel for<class kernel>(
sycl::nd_range<l>(sycl::range<1>(4096), sycl::range<l>(64)),
[=]1 (sycl::nd_item<1> ndi)
{
size t i = ndi.get _global linear_id();
accl[i] = 1;
1)
1)
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Tutorial 4

» Parallel_for with nd_range
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Buffer Management

SYCL provides host managed memory in the form of buffer or image
sycl::buffer
* manages copying data back and forth between host and device
» can be constructed with cl_mem object, host data, or allow SYCL to allocate
* use accessors to get access to data (next topic)
« sycl::image
» special instance of buffer to support image concepts such as channel order and image
format
» explicit copying is possible via copy interface provided by the sycl::handler class
« private memory local to a workitem can be allocated inside of
» parallel_for or parallel_for_work item
« semi-private memory local to a workgroup can be allocated inside of
» parllel_for work group
» accessor using sycl::local _accessor
* Shared Local Memory or SLM
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Buffer Management Example

template <typename T, int dimensions = 1, typename Allocatorl =
sycl.: buffer_allocator> class buffer,

bufrfer(const range<dimensions> &burfferRange, const property 1ist &proplList =

{}):

// create buffer from existing memory allocation

double *data = malloc(sizeof(double) * 1000);

data[O] = 1.0;

sycl::buffer<double, 1> bufl(data, sycl::range<1>(1000));

// SYCL handles memory allocation and deallocation
sycl::buffer<double, 1> buf2(sycl::range<1>(1000));
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C++ Review - auto

« keyword that can be used to replace any type declaration
« compiler will determine what type the variable is based on what the variable

is being initialized with
» eases the burden for the writer of the code
* raises the burden for the reader of the code
» good use is with accessor variables

std: :map<std::pair<std::string,std::

ng>,std:

:vector<in

t>>::iterator iter;
iter = mymap.begin();

auto iter = mymap.begin();
auto 1 = 0x5;

31 Argonne Leadership Computing Facility

uuuuuuuuuuuuuuuu



Accessors

» accessors are used to access memory from buffers, images or local memory

 inform runtime of your intent to access data and allows runtime to schedule
access

* synchronize access to data

» accessor has five components

data type (int, float, etc.)

dimensions (1, 2, 3)

access mode (read, write, read_write, discard_write, discard_read_write,
atomic)

target (global_buffer, constant_buffer, local, host_buffer)

placeholder (defaults to false)
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Accessor Example

using namespace cl;
sycl: :buffer<double, 1> buf2(sycl::range<1>(1000));

queue.submit(
[&] (sycl::handler &cgh) {
auto b_acc = buf2.get _access<sycl::access::mode::read write>(cgh);
cgh.parallel for<class kernel>(sycl::range<1>(1000),
[=] (sycl::id<1> x)
{
double vv = 5.0; b acc[x[0]] = vv;
1)
b g

auto b_host acc = buf2.get _access<sycl::access::mode::read _write>();
// use b_host _acc on host side to allow runtime to synch access

// Will wait until data 1is copied back to host

double v = b_host _acc[5];
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Thomas 5

» Parallel_for with buffer and accessor

« Buffer with shared local memory (SLM)
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Accessor DAG

» A set of accessors will construct a DAG which the runtime
will understand

» This will allow runtime to schedule work in optimal fashion
based on data access rules

sycl::buffer<float, 1> Ba (sycl::range(4096));
sycl::buffer<float, 1> Bb (sycl::range(4096));
sycl::buffer<float, 1> Bc (sycl::range(4096));
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Accessor DAG Example

queue.submit([&] (sycl::handler &cgh) {

auto Aa = Ba.get access<sycl::access:
auto Ac = Bc.get access<sycl::access:
...<kernel F>...

1)

queue.submit([&] (sycl::handler &cgh) {

auto Ac = Bc.get access<sycl::access:
...<kernel H>...

1)

queue.submit([&] (sycl::handler &cgh) {

auto Ab = Bb.get access<sycl::access:
...<kernel G>...

1)

queue.submit([&] (sycl::handler &cgh) {

auto Ab = Bb.get access<sycl::access:
auto Ac = Bc.get access<sycl::access:
...<kernel _J>...
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:mode:
:mode:

:mode:

:mode:

:mode:
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:discard write>(cgh);

:read_write>(cgh);

:read_write>(cgh);

:read>(cgh) ;
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Tutorial 6

» Kernel dependency with buffer/accessor DAG
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Unified Shared Memory (sycl::malloc)

* Not currently part of SYCL 1.2.1 spec and not in June SDK

» away to use SYCL without buffers and accessors

* requires certain properties of memory access/visibility between host and
device

* https://qgithub.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/USM.adoc

void* sycl::malloc device (size t size,
const sycl::device& dev,
const sycl::context& ctxt);

void* sycl::malloc shared (size t size,
const sycl::device& dev,
const sycl::context& ctxt);

void sycl::free (void* ptr, sycl::context& context);
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Tutorial 7

* Unified Shared Memory example
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SYCL Implementations

e Intel LLVM SYCL
» https://github.com/intel/llvm
Codeplay ComputeCpp
» https://www.codeplay.com/products/computesuite/computecpp
triSYCL
» https://qgithub.com/triSYCL/triSYCL
hipSYCL
* https://github.com/illuhad/hipSYCL
sycl-gtx
» https://github.com/ProGTX/sycl-gtx
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References

« SYCL Specification

» https://www.khronos.org/reqistry/SYCL/specs/sycl-1.2.1.pdf
SYCL Reference Sheet

» https://www.khronos.org/files/sycl/sycl-121-reference-card.pdf
Codeplay examples

» https://qgithub.com/codeplaysoftware/computecpp-sdk/tree/master/samples
Parallel Research Kernels

» https://qgithub.com/ParRes/Kernels

« under Cxx11 directory
Thomas Applencourt’s Tutorial

» https://github.com/kevin-harms/sycltrain/tree/master/9 sycl of hell
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Summary

 SYCL follows modern C++
« Good or bad, you decide

« SYCL lineage from OpenCL
« shares many properties from OpenCL
« if you like OpenCL, you'll probably like SYCL
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Advanced Topics
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Error Handling

 The SYCL specification states that when wait is called on a queue, it will
discard any exceptions.
* In order to catch exceptions, one needs to
 callwait_and throw
» define an error handler
« initialize a queue with the error handler

using sycl::async _handler = \
function class<void(sycl::exception list)>;
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Error Handling Example
auto ah = [](sycl::exception list elist)

{
for (auto &e : elist)
{
std::rethrow _exception(e);
}
¥

sycl::queue q({sycl::default selector ()}, ah);

try { g.wait _and throw(); }
catch (sycl::exception &e)
{ std::cout << e.what() << std::endl; }
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Device Local Memory

 SYCL provides a mechanism to declare a type of shared local memory which
is visible between work-items of a work-group and is present only on the
device
« Two methods to declare
 in a parallel_for_work _group region
* using a shared accessor
» Size allocated is per work-group

sycl::accessor<type, dimension, sycl..access..mode,
sycl::access::target::local> slm_acc;

auto slm _acc = sycl::accessor<int, 1, sycl::access::mode::read write,
sycl::access::target::local>(sycl::range<1>(4096), cgh);
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Reduction

» Currently SYCL does not define a method for reductions or provide any
mechanism other than an atomic memory region
« restricted set of types - no double

auto buf = sycl::buffer<int, 1>(sycl::range(l));
auto accumulated = buf.get access<access::mode::atomic>(cgh);
accumulated[i].fetch_add(5);

 Intel is proposing an extension to SYCL for a reduction specific operation
 https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/Reduction/Re
duction.md

cgh.parallel for<class sum>(nd_range<1l>{N, M},
reduction(span(out, 1), 0, plus<int>()),
[=](nd_item<1l> it, auto& out)

{ int i = it.get _global id(0); out[O@] += 1in[i]; });
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SYCL Compiler
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SYCL Compilation Flow

main.cpp:

#include <CL/sycl.hpp>
#include <iostream>

using namespace cl::sycl;
class Hij

int main() {
const size t array_size = 16;
int data[array_size];

buffer<int, 1> resultBuf{ data, range<l>{array_size} };
queue q;
q.submit([&](handler& cgh) {
auto resultAcc = resultBuf.get_access<access: :mode: write>(cgh);

cgh.parallel_for<class Hi>(range<l>{array_size}, [=](id<1> i) {
resultAcc[i] = static_cast<int>(i.get(@));
D;
D;

for( int i = 0; i < array_size; i++ )
std::cout << "data[" << i << "] = " << data[i] << std::endl;

return 0;

}

Grer.Device
Compiler
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SYCL Execution Flow

Executable
{ SYCL Runtime SYCLN}
(CodePlay*, Intel, Other)
[ Q Q
— O O
> > >
=l EIntel CPU jga a
O NCL RuntimelC=:nCL Runtime
:IO: (o (a1

inside™
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