A Roadmap for SYCL/DPC++
on Aurora

Thomas Applencou rt -
Kevin Harms -

ALCF

mailto:tapplencourt@anl.gov
mailto:harms@alcf.anl.gov

DPC++ (Data Parallel C++) and SYCL

Overview

« SYCL

« SYCL (pronounced “sickle’”) is a royalty-free, cross-platform abstraction C++ programming model for OpenCL. SYCL
builds on the underlying concepts, portability and efficiency of OpenCL while adding much of the ease of use and
flexibility of single-source C++

» Khronos standard specification
» SYCL is designed to be as close to standard C++ as possible
« Data Parallel C++ (DPC++)
+ Intel interpretation/implementation of the SYCL specification
* Incorporates SYCL 2019 specification and Unified Shared Memory

* Add language or runtime extensions as needed to meet user needs

2 Argonne Leadership Computing Facility Argonne 6

Intel oneAPI

3

Argonne Leadership Computing Facility

oneAPI is broad-based software ecosystem that works together to
accelerate software on multiple different device architectures

« DPC++ is one component in that ecosystem

Optimized Applications

Optimized Middleware & Frameworks

DIRECT PROGRAMMING | API-BASED PROGRAMMING

Data Parallel C++ oneAPI Analysis &
(DPC++) Libraries Debug Tools

SCALAR VECTOR MATRIX SPATIAL

{Future)

Image courtesy of Intel

Argonne &

Why SYCL?

Who should listen to this presentation...

You ...

 are creating a greenfield application or complete rewrite and chose C++ as your
base language

» are coming from CUDA or HIP and you want to embrace an open standard

4 Argonne Leadership Computing Facility Argggngma

Overview

/ royalty-free, cross-platform abstraction layer that builds on the \ SYCL

underlying concepts, portability and efficiency of OpenCL that
enables code for heterogeneous processors to be written in a
“single-source” style using completely standard C++. SYCL single-
source programming enables the host and kernel code for an
application to be contained in the same source file, in a type-safe
way and with the simplicity of a cross-platform asynchronous task
graph. SYCL includes templates and generic lambda functions to
enable higher-level application software to be cleanly coded with
optimized acceleration of kernel code across the extensive range of

shipping OpenCL 1.2 implementations.
K -- SYCL Specification 1.2.y

+ standard C++11
* OpenCL 1.2 memory model

» based on OpenCL - reuses the same concepts for definition of the architecture
 platform, device, queue, NDRange, work groups and work items
 this presentation is just scratching the surface of SYCL

5 Argonne Leadership Computing Facility Argonne &

uuuuuuuuuuuuuuuu

SYCL Ecosystem

SYCL source code

(effort announced by Intel on 2019/01/11)

(non-standard macros required)

&y
l...
..IlllllllIl.Illlllllllll....
l..
L/

a®
IIIII.“--

.
*

*

ComputeCpp hipSYCL

PTX devices . Any CPU
*

"4 (with OpenMP)
OpenCL + SPIR-df

- pretty much anything
)

OpenCL + SPIR-V OpenCL + SPIR(-V)

| - Intel CPUs/GPUs |

[- Intel cPUSs/GPUS |

(with OpenMP) - pocl (CPUs,NVIDIA | . AMD GPUs | |- NVIDIA GPUs|
- o:’heJiSPIE-V (depending on GPUs)
evices: driver stack)
- Renesas R-Car https://github.com/illuhad/hipSYCL/blob/master/doc/img/sycl-targets.png

6 Argonne Leadership Computing Facility Argggng,ﬁ

https://github.com/illuhad/hipSYCL/blob/master/doc/img/sycl-targets.png

Foreword

« SYCL is based modern C++ (standard C++11)
» We will review C++ concepts and syntax as we go
* You will need a good grasp of certain C++ syntax to understand the code

examples

7 Argonne Leadership Computing Facitty ... Argonne «s

Platforms and Devices

» Platforms contain devices
« A host may have multiple platforms
« A platform may have multiple devices
» Platforms are loosely defined as an implementation runtime
» Devices correspond to some hardware that the SYCL code will run on
 Iris/Gen9 nodes
« 3 platforms, each with one device
* Host, CPU, GPU

8 Argonne Leadership Computing Facility Argggng,ﬁ

Pseudo-code walkthrough

selector = default _selector ()
g = queue(selector)

b = buffer (double, 1000)
g.submit (

FC) A

accessor (b, READ AND WRITE)

a:

K (1) {
a[i]l = a[i] * 2

}

}
)

g.wait_and _throw()
a2 = accessor (b, READ _ONLY)
printf(“%f”, a2[0])

9 Argonne Leadership Computing Facility Argggngmme

C++ Review - const

« const has been around in C for many years

 modern C++ compilers are more strict about const correctness

 If your code looks right but you have an odd error about the LHS/lvalue or
RHS/rvalue, could be due to a const correctness issue

const int

file.cpp:40:28: error:. non-const lvalue reference to type
'sycl::device _selector' cannot bind to a temporary of type
'sycl::cpu_selector' sycl::device selector &selector cpu =
sycl::cpu_selector();

10 Argonne Leadership Computing Facility Argonne)

uuuuuuuuuuuuuuuu

Device Selection

1

SYCL provides the concept of a device selector which is a function that will choose which
device to run on
device selectors select that type of device

sycl::default_selector

« implementation specific method to select a default device
sycl::cpu_selector

» selects the host device

» The host processor runs the OpenCL implementations and is a single or multi-core CPU.
sycl::gpu_selector

» selects a GPU device

» can be used to accelerate a 3D API such as OpenGL or DirectX.
sycl::accelerator_selector

» selects an accelerator device

« communicate with the host processor using a peripheral interconnect such as PCle.

Argonne Leadership Computing Facility Argonne &

uuuuuuuuuuuuuuuu

Device Selection Example

using namespace cl;
sycl::device _selector selector = sycl::gpu selector();

sycl::queue queue(selector);

» This will select a GPU device
» If a GPU device doesn'’t exist, queue creation will fail.

12 Argonne Leadership Computing Facility

uuuuuuuuuuuuuuuuuu

C++ Review - Template functions

» Template functions similar to Template

classes Device queries using get_info():

° Provide generic types for fUﬂCtiOﬂS DesFriptor in info::device Beturn type
device_type info::device_type
vendor _id cl_uint

template <typename T> void func (T a) max_compute_units cl_uint

{ Tb=a; return; } max_work_item_dimensions cl_uint
func<int>(4): max_work_item_sizes id<3>
max_work_group_size size_t

preferred vector width char

preferred vector width_short

preferred_vector_width_int v

preferred_vector_width_long_long | cl_uint
us '| n g names p ace s y C 1 ; nraforrod vortnar width flnat

template <info::device param> typename info::param traijits<
info::device, param>::type get info() const;

cl uint eu = device.get info<info::device::max _compute units>();

13 Argonne Leadership Computing Facility Argonne)

uuuuuuuuuuuuuuuuuu

Tutorial 1

Introduce test platform
Build environment and tools
Options for testing

« Container

« JLSE

First example

14 Argonne Leadership Computing Facility

uuuuuuuuuuuuuuuu

Queue Management

* Queue constructor with the device selector binds to the queue to the device

» can also be initialized with a specific device
» kernels submitted will run asynchronously
« submit - takes a function object to execute

* runs host code portion synchronously

» once kernel submitted to device, code runs asynchronously

 errors during submit() or wait() reported synchronously via exceptions
« errors that occur after kernel submission are reported asynchronously and

require defining an async_handler

* wait_and_throw or throw_asynchronous must be called to run the

handler

* queue object destructors will wait for queued kernels to complete before the

destructor completes

15 Argonne Leadership Computing Facility Argonneé

uuuuuuuuuuuuuuuu

Queue Management Example

sycl::queue g(selector);

g.submit(...);
g.wait() // discards all exceptions
// gq.wait_and throw();

// implicit synchronization on queue destructor

{

sycl::queue g(selector);

}

16 Argonne Leadership Computing Facility

uuuuuuuuuuuuuuuuuu

Tutorial 2

* First Kernel

17 Argonne Leadership Computing Facility Argonne 5

Kernels

* Three types of kernels

« single_task
* run one instance of the kernel, no local accessors

« parallel_for
* run number of instances based on workgroups and workitem
« number of variants for different types of arguments

« parallel_for_work_group
 allows similar capability as with nd_range
« can run workgroup code that runs only once for the workgroup
« can allocate local memory and private memories
» use parallel_for_work_item within to parallelize over work items

18 Argonne Leadership Computing Facility Argonne)

uuuuuuuuuuuuuuuu

C++ Review - Templates

» the best (or the worst) thing about C++
 allow creating code that uses a generic type
 Removes the need to write many virtual functions with different types

template <typename 1>
class vec3 {
T val[3];
public:
vec3d (T x, Ty, Tz) {
val[O] = x; val[l] = vy; val[2] = z;
}
s
vec3<double> a(1.60, 2.0, 3.0);
vec3<int> b(1l, 2, 3);

19 Argonne Leadership Computing Facility

uuuuuuuuuuuuuuuuuu

C++ Review - lambda

* lambda is common in many languages, same concept in C++
» creates an anonymous function that can capture variables in scope
» [capture] (parameters) { body }

 [] capture nothing

« [&] capture by reference

» [=] capture by making a local copy

» [a, &b] capture explicit variables

void func (std::function<void(int)> f) { int x = 6; f(x); }

{

int a = 6;

func([&] (int g){ if (g == a) std::cout << "success”; 1});
}

20 Argonne Leadership Computing Facility

uuuuuuuuuuuuuuuuuu

Kernel - single task

using namespace cl;

queue.submit(
[&] (sycl::handler &cgh)
{

cgh.single task<class kernell>(

21 Argonne Leadership Computing Facility ArgonneO

AAAAAAAAAAAAAAAAAA

Kernel - parallel_for

using namespace cl;
sycl::buffer<int, 1> val(sycl::range<1>(100));
queue.submit(

[&] (sycl::handler &cgh)

{

auto a = val.get access<sycl::access::mode::write>(cgh);
cgh.parallel for<class kernel2>(sycl::range<1>(100),

),

22 Argonne Leadership Computing Facility Argonne Q

Kernel - parallel_for_work_group

using namespace cCl;
sycl::buffer<int, 1> val(sycl::range<1>(8));
queue.submit(

[&] (sycl::handler &cgh)

{

auto a = val.get access<sycl::access::mode::write>(cgh);
cgh.parallel for_work group<class kernel3>(
sycl::range<1>(2), sycl::range<l>(4),

23 A?g})npe Leadership Computing Facility

nnnnnnnnnnnnnnnnn

Range Operators

SYCL provides seven classes to handle expressing data decomposition
* range, nd_range
* id, item, nd_item
e group, h_item
* range<dimensions>(<size of dimension>)
* range<1>(200)
* range<2>(4, 2)
» id<dimensions> - provides the index into the range
e 1d<1> a; size_ t index = a[0];
e 1d<2> b; size t x = b[O]; size t y = Db[1l];
* nd_range<dimensions>(range<dimension> global size, range<dimension> local_size)
* nd_range<l>(range<1>(256), range<1>(128))
« nd_item<dimensions> - provides index into the nd_range plus more functionality
e nd_item<1l> a;
* size t global index = a.get global id(0);
e size t local _index = a.get local 1id(0);

24 Argonne Leadership Computing Facility Argonne &

uuuuuuuuuuuuuuuu

Range Example

using namespace cl;

g.submit([&] (sycl::handler &cgh)

{

cgh.parallel for<class kernel>(sycl::range<1>(4096),

[=] (sycl::id<1> x)
{

size t i = x[0];

25 Argonne Leadership Computing Facility

uuuuuuuuuuuuuuuu

Tutorial 3

» Basic parallel _for example

26 Argonne Leadership Computing Facility Argonne 5

ND_Range Example

using namespace cl;
sycl:buffer<int, 1> buf(cl::sycl::range<1>(4096));
g.submit([&] (cl::sycl::handler &cgh)
{
auto acc = buf.get access<sycl::access::mode::discard write>(cgh);
cgh.parallel for<class kernel>(
sycl::nd_range<l>(sycl::range<1>(4096), sycl::range<l>(64)),
[=]1 (sycl::nd_item<1> ndi)
{
size t i = ndi.get _global linear_id();
accl[i] = 1;
1)
1)

27 Argonne Leadership Computing Facility Argonne)

uuuuuuuuuuuuuuuuuu

Tutorial 4

» Parallel_for with nd_range

28 Argonne Leadership Computing Facility Argonne 5

Buffer Management

SYCL provides host managed memory in the form of buffer or image
sycl::buffer
* manages copying data back and forth between host and device
» can be constructed with cl_mem object, host data, or allow SYCL to allocate
* use accessors to get access to data (next topic)
« sycl::image
» special instance of buffer to support image concepts such as channel order and image
format
» explicit copying is possible via copy interface provided by the sycl::handler class
« private memory local to a workitem can be allocated inside of
» parallel_for or parallel_for_work item
« semi-private memory local to a workgroup can be allocated inside of
» parllel_for work group
» accessor using sycl::local _accessor
* Shared Local Memory or SLM

29 Argonne Leadership Computing Facility Argonne)

uuuuuuuuuuuuuuuu

Buffer Management Example

template <typename T, int dimensions = 1, typename Allocatorl =
sycl.: buffer_allocator> class buffer,

bufrfer(const range<dimensions> &burfferRange, const property 1ist &proplList =

{}):

// create buffer from existing memory allocation

double *data = malloc(sizeof(double) * 1000);

data[O] = 1.0;

sycl::buffer<double, 1> bufl(data, sycl::range<1>(1000));

// SYCL handles memory allocation and deallocation
sycl::buffer<double, 1> buf2(sycl::range<1>(1000));

30 Argonne Leadership Computing Facitty . Argonne «s

C++ Review - auto

« keyword that can be used to replace any type declaration
« compiler will determine what type the variable is based on what the variable

is being initialized with
» eases the burden for the writer of the code
* raises the burden for the reader of the code
» good use is with accessor variables

std: :map<std::pair<std::string,std::

ng>,std:

:vector<in

t>>::iterator iter;
iter = mymap.begin();

auto iter = mymap.begin();
auto 1 = 0x5;

31 Argonne Leadership Computing Facility

uuuuuuuuuuuuuuuu

Accessors

» accessors are used to access memory from buffers, images or local memory

 inform runtime of your intent to access data and allows runtime to schedule
access

* synchronize access to data

» accessor has five components

data type (int, float, etc.)

dimensions (1, 2, 3)

access mode (read, write, read_write, discard_write, discard_read_write,
atomic)

target (global_buffer, constant_buffer, local, host_buffer)

placeholder (defaults to false)

32 Argonne Leadership Computing Facility Argonne)

uuuuuuuuuuuuuuuu

Accessor Example

using namespace cl;
sycl: :buffer<double, 1> buf2(sycl::range<1>(1000));

queue.submit(
[&] (sycl::handler &cgh) {
auto b_acc = buf2.get _access<sycl::access::mode::read write>(cgh);
cgh.parallel for<class kernel>(sycl::range<1>(1000),
[=] (sycl::id<1> x)
{
double vv = 5.0; b acc[x[0]] = vv;
1)
b g

auto b_host acc = buf2.get _access<sycl::access::mode::read _write>();
// use b_host _acc on host side to allow runtime to synch access

// Will wait until data 1is copied back to host

double v = b_host _acc[5];

33 Argonne Leadership Computing Facility Argonne &

uuuuuuuuuuuuuuuu

Thomas 5

» Parallel_for with buffer and accessor

« Buffer with shared local memory (SLM)

34 Argonne Leadership Computing Facility

uuuuuuuuuuuuuuuu

Accessor DAG

» A set of accessors will construct a DAG which the runtime
will understand

» This will allow runtime to schedule work in optimal fashion
based on data access rules

sycl::buffer<float, 1> Ba (sycl::range(4096));
sycl::buffer<float, 1> Bb (sycl::range(4096));
sycl::buffer<float, 1> Bc (sycl::range(4096));

35 Argonne Leadership Computing Facility Argonne &

uuuuuuuuuuuuuuuu

Accessor DAG Example

queue.submit([&] (sycl::handler &cgh) {

auto Aa = Ba.get access<sycl::access:
auto Ac = Bc.get access<sycl::access:
...<kernel F>...

1)

queue.submit([&] (sycl::handler &cgh) {

auto Ac = Bc.get access<sycl::access:
...<kernel H>...

1)

queue.submit([&] (sycl::handler &cgh) {

auto Ab = Bb.get access<sycl::access:
...<kernel G>...

1)

queue.submit([&] (sycl::handler &cgh) {

auto Ab = Bb.get access<sycl::access:
auto Ac = Bc.get access<sycl::access:
...<kernel _J>...

36 Argonne Leadership Computing Facility

1)

:mode:
:mode:

:mode:

:mode:

:mode:
:mode:

:read>(cgh) ;
:discard write>(cgh);

:read_write>(cgh);

:read_write>(cgh);

:read>(cgh) ;
:read_write>(cgh);

uuuuuuuuuuuuuuuu

Tutorial 6

» Kernel dependency with buffer/accessor DAG

37 Argonne Leadership Computing Facility Argonne 5

Unified Shared Memory (sycl::malloc)

* Not currently part of SYCL 1.2.1 spec and not in June SDK

» away to use SYCL without buffers and accessors

* requires certain properties of memory access/visibility between host and
device

* https://qgithub.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/USM.adoc

void* sycl::malloc device (size t size,
const sycl::device& dev,
const sycl::context& ctxt);

void* sycl::malloc shared (size t size,
const sycl::device& dev,
const sycl::context& ctxt);

void sycl::free (void* ptr, sycl::context& context);

38 Argonne Leadership Computing Facility Argonne 3

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/USM.adoc

Tutorial 7

* Unified Shared Memory example

40 Argonne Leadership Computing Facility Argonne 5

SYCL Implementations

e Intel LLVM SYCL
» https://github.com/intel/llvm
Codeplay ComputeCpp
» https://www.codeplay.com/products/computesuite/computecpp
triSYCL
» https://qgithub.com/triSYCL/triSYCL
hipSYCL
* https://github.com/illuhad/hipSYCL
sycl-gtx
» https://github.com/ProGTX/sycl-gtx

41 Argonne Leadership Computing Facility Argonne 5

https://github.com/intel/llvm
https://www.codeplay.com/products/computesuite/computecpp
https://github.com/triSYCL/triSYCL
https://github.com/illuhad/hipSYCL
https://github.com/ProGTX/sycl-gtx

References

« SYCL Specification

» https://www.khronos.org/reqistry/SYCL/specs/sycl-1.2.1.pdf
SYCL Reference Sheet

» https://www.khronos.org/files/sycl/sycl-121-reference-card.pdf
Codeplay examples

» https://qgithub.com/codeplaysoftware/computecpp-sdk/tree/master/samples
Parallel Research Kernels

» https://qgithub.com/ParRes/Kernels

« under Cxx11 directory
Thomas Applencourt’s Tutorial

» https://github.com/kevin-harms/sycltrain/tree/master/9 sycl of hell

42 Argonne Leadership Computing Facility Argonne 5

https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/files/sycl/sycl-121-reference-card.pdf
https://github.com/codeplaysoftware/computecpp-sdk/tree/master/samples
https://github.com/ParRes/Kernels
https://github.com/kevin-harms/sycltrain/tree/master/9_sycl_of_hell

Summary

 SYCL follows modern C++
« Good or bad, you decide

« SYCL lineage from OpenCL
« shares many properties from OpenCL
« if you like OpenCL, you'll probably like SYCL

43 Argonne Leadership Computing Facility

uuuuuuuuuuuuuuuu

Advanced Topics

44 Argonne Leadership Computing Facility

Error Handling

 The SYCL specification states that when wait is called on a queue, it will
discard any exceptions.
* In order to catch exceptions, one needs to
 callwait_and throw
» define an error handler
« initialize a queue with the error handler

using sycl::async _handler = \
function class<void(sycl::exception list)>;

45 Argonne Leadership Computing Facility Argonne &

uuuuuuuuuuuuuuuuuu

Error Handling Example
auto ah = [](sycl::exception list elist)

{
for (auto &e : elist)
{
std::rethrow _exception(e);
}
¥

sycl::queue q({sycl::default selector ()}, ah);

try { g.wait _and throw(); }
catch (sycl::exception &e)
{ std::cout << e.what() << std::endl; }

46 Argonne Leadership Computing Facility Argonne &

uuuuuuuuuuuuuuuuuu

Device Local Memory

 SYCL provides a mechanism to declare a type of shared local memory which
is visible between work-items of a work-group and is present only on the
device
« Two methods to declare
 in a parallel_for_work _group region
* using a shared accessor
» Size allocated is per work-group

sycl::accessor<type, dimension, sycl..access..mode,
sycl::access::target::local> slm_acc;

auto slm _acc = sycl::accessor<int, 1, sycl::access::mode::read write,
sycl::access::target::local>(sycl::range<1>(4096), cgh);

47 Argonne Leadership Computing Facility Argonne &

uuuuuuuuuuuuuuuuuu

Reduction

» Currently SYCL does not define a method for reductions or provide any
mechanism other than an atomic memory region
« restricted set of types - no double

auto buf = sycl::buffer<int, 1>(sycl::range(l));
auto accumulated = buf.get access<access::mode::atomic>(cgh);
accumulated[i].fetch_add(5);

 Intel is proposing an extension to SYCL for a reduction specific operation
 https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/Reduction/Re
duction.md

cgh.parallel for<class sum>(nd_range<1l>{N, M},
reduction(span(out, 1), 0, plus<int>()),
[=](nd_item<1l> it, auto& out)

{ int i = it.get _global id(0); out[O@] += 1in[i]; });

48 Argonne Leadership Computing Facility Argonne &

uuuuuuuuuuuuuuuu

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/Reduction/Reduction.md

SYCL Compiler

49 Argonne Leadership Computing Facility

SYCL Compilation Flow

main.cpp:

#include <CL/sycl.hpp>
#include <iostream>

using namespace cl::sycl;
class Hij

int main() {
const size t array_size = 16;
int data[array_size];

buffer<int, 1> resultBuf{ data, range<l>{array_size} };
queue q;
q.submit([&](handler& cgh) {
auto resultAcc = resultBuf.get_access<access: :mode: write>(cgh);

cgh.parallel_for<class Hi>(range<l>{array_size}, [=](id<1> i) {
resultAcc[i] = static_cast<int>(i.get(@));
D;
D;

for(int i = 0; i < array_size; i++)
std::cout << "data[" << i << "] = " << data[i] << std::endl;

return 0;

}

Grer.Device
Compiler

50 Argonne Leadership Computing Facility

N\
Kernel IR/ISA

(SPIR-V, VISA, ISA)

(main.o)

Standard
Object File

d

Executable!

Argonne &

NATIONAL LABORATORY

SYCL Execution Flow

Executable
{ SYCL Runtime SYCLN}
(CodePlay*, Intel, Other)
[Q Q
— O O
> > >
=l EIntel CPU jga a
O NCL RuntimelC=:nCL Runtime
:IO: (o (a1

inside™

51 Argonne Leadership Computing Facility Argonne 5

