Software

PERFORMANCE TUNING USING
INTEL" ADVISOR AND VITUNE “AMPLIFIER

aaaaaaaaaaaaaaaaaaaaaa

rrrrrrrrrrrrrrrr

Intel Confidential

Agenda

Tools Covered Examples

= VTune™ Amplifier Application = 3D stencil (C)

Perf hot i
erformance Snapsho = Matrix covariance (Python)

= Vtune™ Amplifier

= |ntel® Advisor

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Tuning at Multiple Hardware Levels

Exploiting all features of modern processors requires good use of the available resources
= Core
— Vectorization is critical with 512bit FMA vector units (32 DP ops/cycle)
— Targeting the current ISA is fundamental to fully exploit vectorization
= Socket
— Using all cores in a processor requires parallelization (MPI, OMP, ...)
— Up to 64 Physical cores and 256 logical processors per socket on Thetal
= Node
— Minimize remote memory access (control memory affinity)

— Minimize resource sharing (tune local memory access, disk 10 and network traffic)

Optimization Notice

Copyright © 2019, Intel C

Tuning Workflow

Intel® W Tune™ Amplifier's
Application Performance Snapshot

MPI Bound CPU Bound Thread-level FPU
MPI Imbalance Mamory Bound serial time underutilization
Thread-level scalability issues parallelization {vector efficiency
+ {OpenMP analysis) issues)

Intel® Trace Analyzer ¢ +

and Collector

Intel® MPI Tuner

CLUSTER NODE CORE

Intel® Advisor

Intel® WTune™ Amplifier Threading Vectorization

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

IIIII

Iso3DFD - A Simple 3D Stencil

= For computing P,,+(x,y,z), we need to use all neighbors in the 3
dimensions of P,(x,y,z).

= The stencil looks like a 3D cross in Iso3DFD

o

Optimization Notice

Copyr ghOZOWQI lC orpo n. All rights reserved.
*Other and brands ybllmed hppyfh

Iso3DFD 2D CUT

This is a 2D cut of our 3D volume

We create a perturbation and look at the pressure for 4 different time steps

We see that there is no boundary condition

Naive Wave Propagation Kernel Implementation

for(int ix=0; ix<nx; ix++) { * 3D Finite Difference
for(int iy=0; iy<ny; iy++) { « Acoustic isotropic, pressure only scheme
for(int iz=0; iz<nz; iz++) { « 16t order in space 2"d order in time
int offset = iz¥nx*ny + ly*nx + ix; * No proper boundary conditions for this example
float value = 0.0;

value += ptr prev[offset]*coeff[0];
for(int ir=1; ir<=8; ir++) {

value +=
value +=
value +=

}

ptr_next[offset]

bh}

coeff[ir] * (ptr_prev[offset +
coeff[ir] * (ptr_prev[offset +
coeff[ir] * (ptr_prev[offset +

2.0f* ptr prev[offset]

ir] + ptr prev[offset - ir]);
ir*nx] + ptr prev[offset - ir*nx]);
ir*nx*ny] + ptr_prev[offset - ir*nx*ny]);

- ptr_next[offset] + value*ptr vel[offset];

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Hardware

For the rest of the presentation we are using the following system configuration
= |ntel® Xeon Phi™ Processor 7250 @ 1.4 GHz

= Each processor as 68 cores

= Each core has 4 hyperthreads

= 16 GB on-chip MCDRAM

= 96 GB DDR4

= Memory configured in cache-quadrant mode

This is only slightly different from the 7230 processors in Theta, and the
instructions have been customized to work there without modification.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

GETTING A BASELINE FOR ISO3DFD

Baseline Version

We start with a naive implementation that includes several performance impacting
mistakes. Among other things this version should show:

= No parallelization
= No vectorization
= Sub-optimal memory accesses

Let's pretend we know nothing about this code and simply follow the tuning workflow to
answer the following questions:

= |s the code performing well overall?
= How much room for improvement is there?

= Where is the principal bottleneck?

Optimization Notice

Copyright 019, Intel Corporation. All rights reserved.
*Other nar and brands may be claimed as the property of others.

VTune™ Amplifier's Application Performance
Snapshot

High-level overview of application performance

» |dentify primary optimization areas

= Recommend next steps in analysis

= Extremely easy to use

» Informative, actionable data in clean HTML report
» Detailed reports available via command line

= Low overhead, high scalability

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Application Performance Snapshot on Theta

Launch all profiling jobs from /projects rather than /home

No module available, so setup the environment manually:

$ source /opt/intel/vtune amplifier/apsvars.sh
$ export LD LIBRARY PATH=SLD LIBRARY PATH:/opt/intel/vtune amplifier/libé64
$ export PMI_NO FORK=1

Launch your job in interactive or batch mode:

$ aprun -N <ppn> -n <totRanks> [affinity opts] aps ./exe [argsuments]

Produce text and html reports:

$ aps -report=./aps result YYYMMDD

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Overall Performance for Baseline Version

stform: Intel(R) Processor code named Knights Landing
int per node: 272

type: Event-based counting driver

953.31s

5.80K

CPl

CPU Utilization

Average CPU Utilization
1.76 Out of 272.00 logical CPUs

Optimization Notice

available logical CPU cores

because of insufficient parallel work, blocking on
synchronization, or too much 1/O. Perform function or
source line-level profiling with tools like Intel® VTune™
Amplifier to discover why the CPU is underutilized.

Current run darael Lelda
CPU_Utilization 0.60%K >90% |

Back-End Stalls

0.60%r 80.70%R of pipeline slots 0.05K

L2 Hit Bound

L2 Miss Bound
100.00%R of cycles

4.76

Back-End Stalls 80.70%R <20% —
SIMDInsteperCycle 005K >1 ®

T : e X
Your application might underutilize the

SIMD Instr. per Cycle

FP Instruction Mix
f cycles of Packed SIMD Instr.
11.60

of Scalar SIMD Instr

88.40%K

Average DRAM Bandwidth
0.00 GB/s

Average MCDRAM Bandwidth

GB/s

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Subpar performance in all areas

Most severe issues related to CPU
utilization

First, let’s figure out if optimizing
this code is worth our time

Additional information would
be available if this version was
OpenMP* or MPI| enabled

Intel® Advisor

Modern HPC processors explore different level of parallelism:
* between the cores: multi-threading (Theta: 64 cores, 256 threads)
= within a core: vectorization (Theta: 8 DP elements, 16 SP elements)

Adapting applications to take advantage of such high parallelism is quite
demanding and requires code modernization

The Intel® Advisor is a software tool for vectorization and thread prototyping

The tool guides the software developer to resolve issues during the
vectorization process

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Typical Vectorization Optimization Workflow

There is no need to recompile or relink the application, but the use of -g is
recommended.

1. Collect survey and tripcounts data

» |nvestigate application place within roofline model

= Determine vectorization efficiency and opportunities for improvement
2. Collect memory access pattern data

= Determine data structure optimization needs
3. Collect dependencies

= Differentiate between real and assumed issues blocking vectorization

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Cache-Aware Roofline
Next Ste PS If Under the Vector Add Peak

If just above the

Scalar Add Peak

Check vectorization
efficiency in the Survey.

flagstoin FMA usage.
If under or near a FLOPS gs to induce usage Follow the
memory roof... A recommendations to

Check “Traits” in the Survey to see if FMAs are
used. If not, try altering your code or compiler

. Try a MAP analysis. Ll improve it if it's low.
Make any approprlate 4 ? V‘ctor Add Peak
cache optimizations. : I ‘
« If cache optimization 1 | Scalar Add Peak...
is impossible, try I : Check the Survey Report
reworking the : I to see if the loop
algorithm to have a | ‘ vectorized. If not, try to
higher Al. ‘ Scalar Add Peak get it to vectorize if
possible. This may involve
running Dependencies to
see if it's safe to force it.

>

Arithmetic Intensity

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Using Intel® Advisor on Theta

Two options to setup collections: GUI (advixe-gui) or command line (advixe-cl).

| will focus on the command line since it is better suited for batch execution, but the GUI
provides the same capabilities in a user-friendly interface.

| recommend taking a snapshot of the results and analyzing in a local machine (Linux, Windows,
Mac) to avoid issues with lag.

Some things of note:

= Use /projects rather than /home for profiling jobs

= Setyour environment:
$ source /opt/intel/advisor/advixe-vars.sh
$ export LD LIBRARY PATH=/opt/intel/advisor/1ibé64:$LD LIBRARY PATH
$ export PMI NO FORK=1

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Sample Script

#!/bin/bash
#COBALT -t 30
#$COBALT -n 1 ——Basic scheduler info (the usual)

#COBALT -q debug-cache-quad

#COBALT -A <project>

export LD_LIBRARY PATH=/opt/intel/advisor/1ib64:SLD_LIBRARY PATH e Fnvironment setup

source /opt/intel/advisor/advixe-vars.sh

export PMI_NO FORK=1

aprun -n 1 -N 1 advixe-cl -c roofline --project-dir ./adv -- ./exe [args—PInvoke Intel® Advisor

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® Advisor Summary

Collect roofline data

Check for data
access inefficiencies

Verify that vectorization
is possible

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Vectorization
Workflow

off li| Batch mode

Run Roofline

» Collect| m| b1

] with Callstacks

1. Survey Target

& Collect| b/

Mark Loops for Deeper Analy...

Select checkboxes in the Survey
& Roofline tab to mark loops for
other Advisor analyses.

-~ There are no marked loops -

1.1 Find Trip Counts and FLOP
S Collect| |

Trip Counts

[Jrorp
oo Analyze all loops --

2.1 Check Memory Access Pat...
I+ Collect | | []
Y No loops selected --

2.2 Check Dependencies

% Collect | []

© - No loops selected --

Elapsed time: 950.00s Not Vectorized

ILTER:| All Modules VH All Sources ¥

Summary |% Survey 8 Roofline "0 Refinement Reports

@ Vectorization Advisor

Vectorization Advisor is a vectorization analysis toolset that lets you identify loops that will benefit most from
vector parallelism, discover performance issues preventing from effective vectorization and characterize your
memory vs. vectorization bottlenecks with Advisor Roofline model automation.

Program metrics

Elapsed Time 950.00s * Total INT+FLOAT Giga OPS
Vector Instruction Set AVX512, AVX ¥ Total GFLOPS
Number of CPU Threads 1 > Total GINTOPS

Performance characteristics
Metrics Total

Total CPU time 949.89s [100.0%
Time in scalar code 949.20s (I 100.0%

Vectorization Gain/Efficiency (Not available)@

Top time-consuming loops

Loop Self Time” Total Time”~’
@ [loop iniso_3dfd at iso3dfd.cc:71 474.305s 474.305s
@ [loop in iso_3dfd at iso3dfd.cc:71 473.446s 473.446s
© [loop in main at iso-3dfd main.cc:80 0.529s 0.529s
O [loop iniso 3dfd at iso3dfd.cc71 0.521s 473.967s
G [loop in iso 3dfd at iso3dfd.cc71 0.449s 474.754s

Collection details

Platform information

INTELADVISOR 2013

0.13
0.13

Roofline and Room for Improvement

Summary % Survey & Roofline ™ Refinement Reports.

& k‘ Q *« Fg v | Cores: 27’2o VHY Default: FLOAT "HT No Results to Compare v‘ = Performance iS far from any
A
= o
Z 10000 - 1 . .
) S ormrscssnceos” nardware limit
w P
D/Q/.-f g::::-.fip.\ie.ﬂlﬁlf“i‘éf'ﬁa ".--J‘E?fEQF'.S;.-_
2065.18 GFLOPS (15832.7x).C ak 2815.33 GFLOF@? u Be lOW D RAM BW
1000 - S AR o= " Tlor Add Peak: 140848 GFLOPS

= Below FP scalar add peak

?
Scalar Add Peak: 166.88 GFLOPS

100

It seems worthwhile to invest
some time in optimizing this
code

[loop in iso_3dfd at iso3dfd.cc:71]

| | Scalar; processes Float32 data type(s) 4
4‘ Performance: 0.13 GFLOPS

0.1 - L1 Arithmetic Intensity: 0.17 FLOP/Byte s
Self Time: 474.305 s
| | Self Elapsed Time: 474.305 s FLDPfoEe (Arithmetic Intensity)
0.01 01 Total Time: 474.305 s 10
Physical Cores: 272 © App Threads: 1 @ self)| Self GB/s: 0.7783 4.305 s

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of

Intel® VTune™ Amplifier

VTune Amplifier is a full system profiler

= Accurate

= |Low overhead

» Comprehensive (microarchitecture, memory, 10, treading, ...)
= Highly customizable interface

= Direct access to source code and assembly

Analyzing code access to shared resources is critical to achieve good
performance on modern systems

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Predefined Collections

Many available analysis types:

» advanced-hotspots
= concurrency

= disk-io

= general-exploration
= gpu-hotspots

= gpu-profiling

= hotspots

» hpc-performance

» locksandwaits

" memory-access

= memory-consumption
= system-overview

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.

Advanced Hotspots

Concurrency

Disk Input and Output

General microarchitecture exploration
GPU Hotspots

GPU In-kernel Profiling

Basic Hotspots
HPC Performance Characterization
Locks and Waits

\ 4

Memory Access
Memory Consumption

\ 4

System Overview

*Other names and brands may be claimed as the property of others.

\ 4

Python Support

The HPC Performance Characterization Analysis

Threading: CPU Utilization

= Serial vs. Parallel time
= Top OpenMP regions by potential gain

= Tip: Use hotspot OpenMP region analysis
for more detail

Memory Access Efficiency
= Stalls by memory hierarchy

= Bandwidth utilization

= Tip: Use Memory Access analysis

Vectorization: FPU Utilization
* FLOPS T estimates from sampling

= Tip: Use Intel Advisor for precise metrics
and vectorization optimization

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

® HPC Performance Characterization HPC Performance Characterization viewpoint (change) @ INTELVTUNE AMPLIFIER XE 2017

B8 Collection Log| @& Ol [Summary
Elapsed Time *: 3.859s
GFLOPS'“: 4.743

CPU Utilization *: 31.3% [«

27.509 Out of 88 logical CPUs
0.761s (19.7%)
3.098s (80.3%)
2.470s (64.0%)
0.627s (16.3%

Average CPU Usage

Serial Time

Parallel Region Time
Estimated |deal Time
OpenMP Potential Gain

Top OpenMP Regions by Potential Gain

CPU Usage Histogram

Memory Bound ~: 50.3% &
Cache Bound 0.092
DRAM Bound 0.194

MNUMA: % of Remote Accesses @ 0.0%
Bandwidth Utilization Histogram

FPU Utilization “: 0.3% [«
GFLOPS : 4743
Scalar GFLOPS 4.735
Packed GFLOPS : 0.008
Top 5 hotspot loops (functions) by FPU usage

*« Bottom-up

>U Usage Histogram
is histogram displays a percentage of the wall time the specific number of CPUs were runnin g simultaneousl ly. Spin
d Overnead time adds to the ldle CPU usage value.

sooms

Iy
2
E
>
&

Elapsed Time

600ms

Target Utilization

|
|
|
|
|
|
400ms }

200ms

ER

T
0 20 40 60

]

Simultaneously Utilized Logical CPUs

T For 3rd, 5th, 6th Generation Intel®

Intel® Xeon Phi™

Core™ processors and second generation
processor code named Knights Landing.

Memory Access Analysis

INTEL VTUNE AMPLIFIER XE 2017

Tune data structures for performance

= Attribute cache misses to data structures
(not just the code causing the miss)

» Support for custom memory allocators

DRAM Bandwidth, GB/sec

poi
b pe latform
s s 5

: i U1 e da it a Tk Ak Total GBfsec

Loy % Read, GB/sec

package 0 50.8 % Write, GB/sec
= CPU Time [
12.7 ¥ luk CPUTime |

27200% ~

package 0 18133%
8067% 9
< > »

CPU ... DRAM Bandui,

Grouping'| Bandwidth Domain | Bandwidth Utiization Type Memory Object [Allocation Stack Y=a]]

Bandwidth Demain / Bandwidth Utiliz... CPUTime ¥ ‘ L2 Miss Count]
v DRAM, GB/sec 840.303: D 6,000,180
. . g v High 5036355 N 4000.120
Optimize NUMA latency & scalability s
» steam c58 (381 MB) 2,000,060
. T & f l h » Medium 241636 @ 0
t t » Low 905295 0 2,000,060
rue alse s arlng Op ImiZzation » MCDRAM Flat GBfsec 8408035 . 6,000,180

= Auto detect max system bandwidth BT
» Easier tuning of inter-socket bandwidth

Bandwidth Domain / Bandwidth Utiliz_.. CPUTime ¥ | L2 Miss Count
v DRAM, GB/sec 840803 D 6.000.180
Easier install, Latest processors v 00 G TVE) 506635 S Ly
= No special drivers required on Linux* b stream.c:98 (331 MB) 2,000,060
= Intel® Xeon Phi™ processor MCDRAM (high :T;fium 2;-232: .. zm%g
bandwidth memory) analysis S VCDRAN Flat GBjsec I — 5000150

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. ‘ |nte‘ . 25

*Other names and brands may be claimed as the property of others.

VTune™ Amplifier on Theta

Two options to setup collections: GUI (amplxe-gui) or command line (amplxe-cl).

| will focus on the command line since it is better suited for batch execution, but the GUI provides the
same capabilities in a user-friendly interface.

Some things of note:
» Use /projects rather than /home for profiling jobs
= Setyour environment:

$ source /opt/intel/vtune amplifier/amplxe-vars.sh
$ export LD LIBRARY PATH=/opt/intel/vtune amplifier/1ibé64:SLD_ LIBRARY PATH
$ export PMI NO FORK=1

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Sample Script

#!/bin/bash

#COBALT -t 30
#COBALT -n 1 —Basic scheduler info (the usual)
#COBALT -q debug-cache-quad

#COBALT -A <project>

export LD LIBRARY PATH=/opt/intel/vtune amplifier/lib64:$LD_LIBRARY PATH >Environment setup

source /opt/intel/vtune_amplifier/amplxe-vars.sh
export PMI_NO_FORK=1

export OMP_NUM THREADS=64; export OMP_PROC_BIND=spread; export OMP_PLACES=cores Invoke VTune™ Amplifier

aprun -n 1 -N 1 -cc depth -d 256 -j 4 amplxe-cl -c hpc-performance -r ./vtune hpc -- ./exe [args]

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

T
; |ntel 27

Rl e g oromenes Crarscerkstion = INTEQEIUNE AMPLIE 20713 H P C P e I’fO rmance

Analysis Configuration Collection Log Summary Bottom-up

Elapsed Time ~: 982.689s Baseli ne Resu lts

Effective CPU Utilization ~; 0.4% [

Average Effective CPU Utilization ~: 0.960 out of 272

Effective CPU Utilization Histogram T h i n gs lo O k b ad :

Back-End Bound “: 82.7% K of Pipeline Slots

L2 Hit Bound ~: 0.9% of Clockticks

L2 Miss Bound : 100.0% R of Clockticks o == =

» Lessthan 1% CPU utilization
DRAM Bandwidth Bound ~: 0.0%

Bandwidth Utilization Histogram

SIMD Instructions per Cycle ~: 0.076 | Over 820/0 Of p|pel|ne Slots
stalled on memory access

% of Packed SIMD Instr. ~: 0.2%
% of Scalar SIMD Instr. = 99.8%
Top Loops/Functions with FPU Usage by CPU Time
This section provides information for the most time consuming loops/functions with floating point operations.

Function CPU Time SIMD Instructions per Cycle Vector Instruction Set Loop Type
[Loop at line 47 in iso_3dfd] 444 .868s 0.081 Body
[Loop at line 47 in iso_3dfd] 444.667s 0.081 Body
update_cfs_shares 1.924s 0.003

[Loop at line 46 in iso_3dfd] 0.491s 0.018 Body

[Loop@0x404d8f in __intel_

No vectorization, but at this point
s — this is a secondary factor

0.251s 0.262 AVX512F_512(512)

Collection and Platform Info

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

CPU Utilization Details

Note the default CPU utilization
histogram has very aggressive targets

Effective CPU Utilization ~: 0.4% K

[} Not all Codes Will take advantage Of Average Effective CPU Utilization ~: 0.960 out of 272

Effective CPU Utilization Histogram
This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously.

4 th read S / CO re Spin and Overhead time adds to the Idle CPU utilization value.

= We can reasonably expect good %
scalability to at least 1 thread / core i

= Clearly we need threading to make
better use Of this System 50 100 150 200

Simultaneously Utilized Logical CPUs

o
N
[
=3

1

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

ADDING THREADING WITH OPENMP*

Parallelization with OpenMP*

#pragma omp parallel for
for(int ix=0; ix<nx; ix++) {
for(int iy=0; iy<ny; iy++) {
for(int iz=0; iz<nz; iz++) {
int offset = iz*nx*ny + iy*nx + ix;
float value = 0.0;
value += ptr prev[offset]*coeff[0];
for(int ir=1; ir<=8; ir++) {

Adding OpenMP* in outer loop to
have sufficient work per thread

value += coeff[ir] * (ptr prev[offset + ir] + ptr prev[offset - ir]);

value += coeff[ir] * (ptr_ prev[offset +
value += coeff[ir] * (ptr_ prev[offset +
}
ptr next[offset] =

}1}

ir*nx] + ptr prev[offset - ir*nx]);
ir*nx*ny] + ptr_prev[offset - ir*nx*ny]);

2.0f* ptr prev[offset] - ptr next[offset] + value*ptr vel[offset];

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Roofline Comparison

Summary % Survey & Roofline "1 Refinement Reports

* Q |—E v | Cores: 272 @, HY Default: FLOAT v HT 2 Compared Results + =

AIAANS

10000

Py

T SRR SP Vector FMA Paak 569036 GFLOPS

) SP Vector Add 853.38 GFLOPS

MA Peak 2836 09 GFLOPS

DP Vector Add Peak: 143031 GFLOPS

SdOT14H

L]

1000 —

?
Scalar Add Peak: 16341 GFLOPS

100 =1

Significant improvement,

but still far from the
DRAM BW limit or any FP

i throughput limits

M base

FLOP/Byte (Arithmetic Intensity)
T

T T
0.01 0.1 1 10

Physical Cores: 272 @ App Threads: 64 @ self Elapsed Time: 10.660s Total Time: 577.205 s

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

New HPC Performance
oo cP e, 51 s esterin Results (CPU)

Serial Time (outside parallel regions) : 1.517s (6.7%)
Parallel Region Time ~: 21.029s (93.3%)

Estinated ldeal Tme®: 17.7775 (78.6%) Large runtime improvement (~43x)

OpenMP Potential Gain “: 3.252s (14.4%) ®
Top OpenMP Regions by Potential Gain

This section lists OpenMP regions with the highest potential for performance improvement. The Potential Gain T h re ad i n g iS n ot p e rfe Ct

metric shows the elapsed time that could be saved if the region was optimized to have no load imbalance
assuming no runtime overhead.

OpenMP Region OpenMP Potential Gain (%) OpenMP Region Time | | SO m e a m O u nt Of Se ri al ti m e

iso_3dfdSompSparallel:64@unknown:45:60 3.252s &k 144% & 21.029s

= 14% imbalance in parallel region

Effective CPU Utilization Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. C P U u ti lizat i O n iS 5 1 / 2 7 2

Spin and Overhead time adds to the Idle CPU utilization value.

H 1 » Really 51 /64 (~80%) since we used
- H only 64 OpenMP* threads

“ i = More threads lead to additional

o | memory conflicts and only minor

R w0 1;-,0 T o performance improvements in this
CE—— A case (not shown).

Simultaneously Utilized Logical CPUs

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

T
; (intel 33

Back-End Bound

L2 Hit Bound :
L2 Miss Bound :
Demand Misses ~:

: 76.0% K of Pipeline Slots
9.1% of Clockticks
100.0% R of Clockticks
73.5% of L2 Input Requests

HW Prefetcher ~: 26.5% of L2 Input Requests
MCDRAM Bandwidth Bound ~: 0.0%
DRAM Bandwidth Bound ~: 0.0%

Bandwidth Utilization Histogram
Explore bandwidth utilization over time using the histogram and identify memory objects or functions with
maximum contribution to the high bandwidth utilization.

Bandwidth Domain: |MCDRAM, GB/sec: v

Bandwidth Utilization Histogram

This histogram displays the wall time the bandwidth was utilized by certain value. Use sliders at the bottom of
the histogram to define thresholds for Low, Medium and High utilization levels. You can use these bandwidth
utilization types in the Bottom-up view to group data and see all functions executed during a particular
utilization type. To learn bandwidth capabilities, refer to your system specifications or run appropriate
benchmarks to measure them; for example, Intel Memory Latency Checker can provide maximum achievable
DRAM and Interconnect bandwidth.

3sq

2.5s

Elapsed Time

Average Bandwidth

Observed Maximum

o g

0 100 200 300

_!H

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.

Bandwidth Utilization

New HPC Performance
Results (Memory)

Over 75% of execution pipeline slots
spent in data access stalls

Performance bound by misses on L2

cache access

= Forces expensive memory accesses

= Note breakdown between demand
and prefetcher request origin

Technically not bandwidth bound, but
clearly serious issues with data access.

BW domain options are DDR and MCDRAM
(most useful for flat mode configurations)

*Other names and brands may be claimed as the property of others.

Bottom-Up view

L Ot S Of | n f orm at | on {2 wec c HPC | c - INTELVTUNE AMPLIFIER 2019

Analysis Configuration Collection Log Summary = Bottom-up
Grouping: OpenMP Region / OpenMP Barrier-to-Barrier Segment / Function / Call Stack K O

| R e ad / W r i t e b a n d Wi d t h t i m e l i n e OpenMP Region / OpenMP Barrier-to-Barrier Segment / Function | Call Stack Elapsed Time | OpenMP Potential Gain CPUTime ¥ Serial CPUTime | Back-End Bound
BRG2 NS oSk il SAGRIN S E1 210205 [SERRNNRREY TSN 1251341s | os ESSSETRCY |

iso_ ,_barrier_ 60 21.029s 32525 1251.341s (NS 0s 76.1%
O r a n [Loop at line 48 in iso_3dfdSompSparallel_for@45] 528.822s 0s 87.4%

[Loop at line 47 in iso_3dfdSompSparaliel_for@45) «- [Loop ¢ 528.822s D os 87.4%

[Loop at line 48 in iso_3dfdSompSparallel_for@45) 528.782s (D 0s 87.0%

B [Loop at line 47 in iso_3dfdSompSparalel_for@45] - [Loop ¢ 528.782s (D 0s 87.0%
INTEDAAL AL are lme bhacies ann £a8A02472 [oF 457 & e avar ¥

* Thread activity timeline, p—rr e — B
including spin and overhead

[] = OpenMP Barrier-
to-Barrier Segment

Thread

7] [Thread
[+] MEfective Time
(] BSpin and Overhe

= Double clicking on the top time g i
consuming line opens the source < - .

I ~
. /'At | f/‘l (/‘/\ \‘ 1%
code view e rrrvy ryY | | o
0718 \ | \ “1 ‘\ | [¥] MCDRAM Bandwidth
0359 | | \ | | "‘ [] maTotal, GBlsec
! > L U v [] muRead Bandwidth

172550 [V] maWrite Bandwicith
147.9007

123250
98.600°
73.950

In multi-socket systems the UPI
traffic timeline is also shown]

FILTER 100.0% % | Any Process Module | Any Module - Call Stack Mode | User function ~ | Inline Mode | Show iniine fu Loop Made \mes and fu v |

/| DRAM Bandwidth
[/] Average Bandwidth.

DRAM Bandwidth

» package_0

MCDRAM Bandwidth

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of ot

ﬁ Memory Access Memory Usage ~ @ |HTELVTUNEAHP|.|F|ER 2019

Analysis Configuration Collection Log Summary Bottom-up Platform

Elapsed Time : 224905 ©) Th e memaor y- access

Memory Bound:

L2 Hit Rate 25.4% N~ s
L2 Hit Bound ~: 9.0% of Clockticks
L2 Miss Bound *: 100.0% K of Clockticks A n a l S I S
Demand Misses = 729% of L2 Input Requests
HW Prefetcher “; 27.1% of L2 Input Requests
MCDRAM Bandwidth Bound *: 0.0%
Summary completely focused on data
L2 Miss Count: 29,184,875,520
MCDRAM Hit Rate: 99.4% aCCeSS
MCDRAM HitM Rate: 93.7%
Total Thread Count: 64

Paused Time *: Os

. .
A i g o i wih et . There i ot b okt e i = |2 hit rate and miss counts

Bandwidth Utilization Histogram

Explore bandwidth utilization over time using the histogram and identify memory objects or functions with | M C D RA M h i t a n d m i S S rat e S

maximum contribution to the high bandwidth utilization.

Bandwidth Domain: MCDRAM, GB/sec -
Bandwidth Utilization Histog

This histogram displays the wall time the bandwidth was utilized by certain value. Use sliders at the | Estl m ate d 0/0 Of ti m e S p e n t b O u n d by

bottom of the histogram to define thresholds for Low, Medium and High utilization levels. You can use

these bandwidth utilization types in the Bottom-up view to group data and see all functions executed
during a particular utilization type. To learn bandwidth capabilities, refer to your system specifications or L 2 a C Ce S S M ‘ D RA M ac C e S S D D R
1 1

run appropriate benchmarks to measure them; for example, Intel Memory Latency Checker can provide

= No CPU utilization data

Bandwidth Utilization

355
3s
255

Elapsed Time

25

Average Bandwidth

Observed Maximum

155

Just invoke

T T
200 300

o
=1
=]

[..] amplxe-cl -c memory-access [..]

|

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of ot

Bottom-Up Details Using memory-access

Memory Access Memory Usage ~ @ |NTH. 'I”UN[AMPLIFI[REUIQ

Analysis Configuration Collection Log Summary Bottom-up Platform Similar VieW to hpc_pe rformance but
o: + e UL oL o A S g_mmamm_hdm - .
ol wemzee focused on memory bw utilization
& 15227 = "\iu:wé':sst H T
§ S :2::: J)ﬂ| f, N r-”! J| A p_ucnmn.; Bandwidth tl m e ll n eS
0‘217:J . .
g il Specific counts now available for both
ppied demand and HW prefetcher initiated

accesses

66.737
44.491 |
22,246

o

Grouping:| Function / Call Stack - &

Memory Bound " "
Function / Call Stack CPU Time ¥ L2 Miss Count L2 HW Prefetcher Allocatio
L2 Hit Rate L2 Hit Bound L2 Miss Bound
iso_3dfdSompSparallel_for@45 527.328s 25.5% 10.7% 100.0% 14,427,432810 4,983,149,
iso_3dfdSompSparallel_for@45 525.855s 25.2% 10.6% 100.0% 14,691,440,730 5,031,150,
apic_timer_interrupt 8.409s 0.0 0 60,001, . . .
INTERUAL 25t o T T 0 Double click the most expensive section
task_tick_fair 4.821s £.000 180 39,001, o
reu_check_callbacks 4.019s 37.8 9,000,270 0071, e . .
o to go to the detailed source view
ktime_get 2.526s 0.0 0 21,000,
2.406s 0.0 0 15,000,
FILTER 100.0% X | Any Process ~ | Thread | Any Thread ~ | Module | Any Module | Shaw inline function ~ || Functions only v

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Investigating Memory Access Issues

While you could look at the main loop VTune™ Amplifier has identified and

probably figure out what is gong on in this case we have a way to pinpoint the
cause of this issues directly.

= A Memory Access Pattern (MAP) analysis in Intel® Advisor will help here

= MAP is a refinement analysis, so you must have collected roofline data

(survey and trip counts) prior to the map analysis, and use the same project
directory:

[..] advixe-cl -c map --project-dir=./adv [..]

» This kind of detailed analysis can take a significant amount of time. Try
reducing the number of iterations to minimize the execution time

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Memory Access Pattern Results

All of this are inefficient

Summary % Survey & Roofline "I Refinement Reports

Footprint Estimate
Site Location a Loop-Carried Dependencies Strides Distribution Access Patte]
Max. Per-Instruction Addr. Range First Instance Site Footprint

[loop in iso_3dfd at iso3dfd.cc:41] No Information Available 100% / 0% / 0% trides 8B 7088
lloop in iso_3dfd at iso3dfd.cc:47] No Information Available 100% / 0% / 0% nit Strides 534MB 2GB
lloop in iso_3dfd at iso3dfd.cc:47] No Information Available 100% / 0% / 0% Al Unit Strides 534MB 2GB
lloop in iso_3dfd at iso3dfd.cc48] No Information Available 60% [/ 40% / 0% Mixed Strides 534MB 2GB
lloop in iso_3dfd at iso3dfd.cc:48] No Information Available 60% [/ 40% / 0% Mixed Strides 534MB 2GB
[loop in iso_3dfd at iso3dfd.cc:50] No Information Available 45% / 55% / 0% Mixed Strides 534MB 2GB
El[loop in iso_3dfd at iso3dfd.cc:50] No Information Available 45% / 55% / 0% Mixed Strides 534MB 2GB
< >

Memory Access Patterns Report | Dependencies Report

ID ‘ | Stride |Type Source W ro n g I.OO p O rd e r Max. Per-Instruction Addr. Range Modules
P12 @ 143520 Constant stride iso3dfd.cc: O r | n d eXI n ?? 534MB iso3dfd; libiomp5.so
P16 O S=rese——ComeraTeerie iso3dfd.cc: g .- 534MB iso3dfd; libiomp5.so
P20 @ 143520 Constant stride iso3dfd.cc 534MB iso3dfd; libiomp5.s0
P24 @ 143520 Constant stride iso3dfd.cc:57 block 0x2b8be12b2010 534MB iso3dfd; libiomp5.s0
P28 @ 143520 Constant stride iso3dfd.cc:59 block 0x2b8bb4af6010, block 0x2b8c0dabe010 534MB iso3dfd; libiomp5.s0
P32 @ 143520 Constant stride iso3dfd.cc:59 block 0x2b8bb4af6010 534MB iso3dfd; libiomp5.so

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

FIXING BASIC MEMORY ACCESS

Incorrect Loop Ordering ®

#pragma omp parallel for
for(int iz=0; iz<nz; iz++) { Loop exchange needed to minimize
jumping around in the memory space.

for(int iy=0; iy<ny; iy++) {
for(int ix=0; ix<nx; ix++) {

int offset = iz*nx*ny + iy*nx + ix;

Order shown here is correct.

float value = 0.0;

value += ptr prev[offset]*coeff[0];

for(int ir=1; ir<=8; ir++) {
value += coeff[ir] * (ptr_ prev[offset +
value += coeff[ir] * (ptr_ prev[offset +
value += coeff[ir] * (ptr_ prev[offset +

ir] + ptr prev[offset - ir]);
ir*nx] + ptr_prev[offset - ir*nx]);
ir*nx*ny] + ptr_prev[offset - ir*nx*ny]);

}
ptr next[offset] =

bh}

2.0f* ptr prev[offset] - ptr next[offset] + value*ptr vel[offset];

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Updated hpc-performance Analysis

Elapsed Time : 4.059s

) Effective CPU Utilization ~: 14.1% &
Average Effective CPU Utilization : 38.439 out of 272
Serial Time (outside parallel regions) : 1.517s (37.4%) &

Top Serial Hotspots (outside parallel regions)

Parallel Region Time : 2.542s (62.6%)
Effective CPU Utilization Histogram

v) Back-End Bound : 43.9% of Pipeline Slots

L2 Hit Bound : 21.1% of Clockticks
L2 Miss Bound : 0.4% of Clockticks
MCDRAM Bandwidth Bound : 0.0%

DRAM Bandwidth Bound ~: 0.0%

Bandwidth Utilization Histogram

) SIMD Instructions per Cycle : 0.457

Instruction Mix:
% of Packed SIMD Instr. ": 0.2%
% of Scalar SIMD Instr. *: 99.8% *®
Top Loops/Functions with FPU Usage by CPU Time

Significant speedup once again (~6x)

No longer bound by L2 misses
Serial time starts to become a concern (37.4%)
Bottleneck now moves to CPU performance again

Looks like main loop is not vectorized at all

This section provides information for the most time consuming loops/functions with floating point operations.

Function CPU Time SIMD Instructions per Cycle ” Vector Instruction Set Loop Type
[Loop at line 48 in iso_3dfdompparallel_for@45] 71.285s 0.535 Body
[Loop at line 48 in iso_3dfdSomp$parallel_for@45] 71.014s 0.522 Body
[Loop at line 47 in iso_3dfdSomp$parallel_for@45] 0.381s 0.013 Body
[Loop at line 47 in iso_3dfdSomp$parallel_for@45] 0.321s 0.011 Body
clear_page_c_e 0.301s 0.408

*N/A is applied to non-summable metrics.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of

Investigate Further - Roofline

Summary] | %5 Survey & Roofline ¥ Refinement Reports "".EI. Anwsnn 2["9
Vectorization Advisor \ Let’S get some detaIlS'

Vectorization Advisor is a vectorization analysis toolset that lets you identify loops that will benefit most from vector parallelism, discover
perfermance issues preventing from effective vectorization and characterize your memory vs. vectorization bottlenecks with Advisor
Roofline model automation,

Program metrics

Elapsed Time 4.61s > Total INT+FLOAT Giga OPS 2687
Vector Instruction Set AVE512, AVX > Total GFLOPS 26.87
Mumber of C 64 > Total GINTOPS o

Performance characteristics

Metrics Total
Total CPU time 170165 (MM 100.0% No vectorization
Time in scalar code 170,16 (R 100.0%

ectorization Gain/Efficiency (Not available) >

Top time-consuming loops-

Loop Self Time? Total Time? Trip Counts®
5 [loop in iso 3dfdSompSparallel for@45 at iso3dfd.cc:48] 77.103s 77.103s 352
5 [loop in iso 3dfdSompSparallel for@45 at iso3dfd.cc:48] 76.904s 76,9045 352
(5 [loop in main at jse-3dfd main.cc81] 0.540s 0.540s 184
(O [loop in iso 3dfdSompiparallel for@45 at iso3dfd.cc:47] 0.440s T7.543s 374
(O [loop in iso 3dfdSompiparallel for@45 at iso3dfd.cc:47] 0.329s 77.233s 374

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Roofline Changes

kQ B~ | Cores: 272 @ + HY Default: FLOAT ~ HT 3 Compared Results v =

10000 2
S S ool SP Vector FMA Peak 5611 GFLOPS

?
SP Vector 2866.69 GFLOPS;2

SdO14D

e i .
DP Vector Add Feak: 1426.26 GFLOPS

1000
Scalar Add Peak: 163.53 GFLOPS?
100 2
Significant improvement,
10 -

omp but still well below any
FP hardware limits

e [

FLOP/Byte (Arithmetic Intensity)
T

T T
0.01 0.1 1 10
Physical Ceres: 272 e App Threads: 64 @ self Elapsed Time: 10.880s Total Time: 598.224 s

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Survey Information

Problem is clearly described

Summary & Survey & Roofline ™ Refinement Reports

R

= Ye ™
=z [=] Function Call Sites and Loops [1 & & Performance lssues]Felf Timew | Total Time Type Why MNe Vectorization? V—
=] £
=8 5|0 [loop in iso_3dfdSomp$parallel for@45 at iso3dfd.cc:48] L1 | @ 1 Assumed dependency present ' T7.103s@ 77.103s@ Scalar & vector dependenc ...

4|5 [loop in iso_3dfdSompSparallel_for@45 at iso3dfd.cc:4d] [l SEUrnEd EPENJEncy presen 76.904: BN TES04s @ Scalar mﬁ

4|0 [loop in main at iso-3dfd_main.cc:81] O @1 Assumed dependency present 0.540z1 0.540z1 Scalar @ vector dependence...

4|0 [loop in iso_3dfdSompSparallel_for@45 at iso3dfd.cc:47] O 0.440s1 T7.5343s @@ Scalar & cuter loop was not ..,

4|0 [loop in iso_3dfdSompSparallel_for@45 at iso3dfd.cc:d7] [l 0.329z| 77233 @@ Scalar & outerloopwasnot .. ™

< > || £ >
Source | Top Down | Code Analytics ‘ Assembly | ‘¢ Recommendations | B Why Mo Vectorization?

ANl Advisor-detectable issues: C++ | Fortran Assumed dependency present
Confirm dependency is real

o Assumed dependency present

The compiler assumed there is an anti-dependency (Write after read - WAR) or a true dependency (Read after write - RAW) in the loop. Improve
nedformance by investigating the assumaotion and handling accardinaly

Confirm dependency is real N t St
There is no confirmation that a real (proven) dependency is present in the loop. To confirm: Run a Dependencies analysis. ex ep

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

dependencies Analysis

Refinement analysis data”

Th |S kl nd Of d etal led analyS|S Can ta ke a Slgn |f|cant These loops were analyzed for memory access patterns and dependencies:

amou nt Of tl me. Site Lacation Dependencies Strides Distribution
[loop in main at iso-3dfd main.cc:58 No information available 0% / 100% / 0%
. . . [loop in main at iso-3dfd main.cc:59 No information available 0% / 100% / 0%
Red uce th e num be r Of |te rat|o ns an d p ro b le m Ssilze to [loop in main at iso-3dfd main.cc:60 No information available 0% / 100% / 0%
. . . . [loop in jso 3dfd at iso3dfd.cc:41 No information available No strides found
minimize exeCUtlon tl me. [loop in iso 3dfd at iso3dfd.cc:47 No information available 65% / 35% / 0%
[loop in iso 3dfd at iso3dfd.cc:47 No information available 65% / 35% / 0%
.) . [loop in iso_3dfd at iso3dfd.cc48 @No dependencies found 63% / 38% / 0%
Once Completed a new SeCtIOn Wlll appear N the [loop in jso_3dfd at iso3dfd.cc:48 dencies found 63% / 38% / 0%
[loop in iso 3dfd at iso3dfd.cc:54 Q@RAW:1 100% / 0% / 0%
S umm ary tab [loop in iso 3dfd at iso3dfd.cc:54 < SRAW:1 > 100% / 0% / 0%
" . - . v
dependencies is a refinement analysis, so you must have collected
roofline data (survey and trip counts) prior to the map analysis, and use
the same project directory: Problem!

[..] advixe-cl -c dependencies --project-dir=./adv [..]

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

dependencies Analysis Details

B Summary % Survey & Roofline ™1 Refinement Reports | Dependendies Source: iso3dfd.cc

Lots of details on report

Footprint Estimate @D
. Site Location Loop-Carried Dependencies Strides Distribution | Access Pattern Y
Max. Per-Instruction Addr. Range First Instance Site Footprint
» |ssueis at the core of the compute 9 i
i[loop in iso_3dfd at iso3dfd.cc:48] @No Dependencies Found 63% / 38% / 0% Mixed Strides 335KB 6MB
loo p i [loop in iso_3dfd atiso3dfd.cc48] @No Dependencies Found 63% / 38% / 0% Mixed Strides 335KB 6MB
EB[loop in iso_3dfd atiso3dfd.cc:54] @RAW:1 [1100% /0% /0% All Unit Strides 88 5728
[C m l h - h 52 for (int ir=1l; ir<=HALF LENGTH; ir++) {
O I er Was rl t t Is IS a true 53 value += coeff[ir] * (ptr_prev[offset + ir] + ptr prev[offset - irl);// horizontal
54 value += coeff[ir]l * (ptr_prev[offset + ir*nl] + ptr_prev[offset - ir*nll);// vertical
d e pe n d e n Cy 55 value += coefflir] * (ptr_prev[offset + ir*dimnln2] + ptr_prev[offset - ir*dimnln2]); // in front / behin
ce)
< >

" Ty p e Of i S s u e i S Read _Aft e r_W r i t e Memory Access Patterns Report | Dependencies Report | ¥ Recommendations
(RAW) Problems and Messages

ID @ | Type Site Name Sources Modules State Severity

™ Read and erte locatlons shown P4 Parallel site information loop_site 6 iso3dfd.cc iso3dfd + Nota problem

Error 1item
Read after write dependency |loop_ iso3dfd.cc |iso3dfd Information 1 item
Type
NOW that the Issue iS Clear We Can fIX it D Instruction Address | Description | Source Function | Variable references ‘Module ‘Stale A || Parallel site information 1 ftem
=IX10 0x403eb0 Write B iso3dfd.cc:53 iso_3dfd register XMM1 iso3dfd A New Read after write depende.. 1 item
simply by using an array variable for 8 source
52 for(int ir=1; ir<=HALF_LENGTH; ir++) { iso3dfd 2
" 53 value coeff[ir] * (ptr_prev[offset + ir] + ptr prev[offset - ir]);// horiz isosdid.cc itemns
Valu e” 54 value += coeff[ir] * (ptr_prev[offset + ir*nl] + ptr_prev[offset - ir*nll);// Module
55 value += coeff[ir] * (ptr prev[offset + ir*dimnln2] + ptr prev[offset — ir*di
EIX12 0x403c8f Parallel site B iso3dfd.cc:54 iso 3dfd iso3dfd R New iso3dfd 2 items
52 for (int ir=1; ir<=HALF_LENGTH; ir++) { State
y . . . 53 value += coeffl[ir] * (ptr_prevl[offset + ir] + ptr_prev[offset - ir]);// horiz N it
L d h d f h N value += coefflir] * (ptr_prev[offset + ir*nl] + ptr prev[offset - ir*nl]);// ew ftem
et S o t IS an See I t e SeCtlon Can 55 value += coeffl[ir] * (ptr_prev[offset + ir*dimnln2] + ptr prev[offset - ir*di Not a problem 1item
. 56 }
be Ve Cto rlzed EIX14 0x403f62 Read E iso3dfd.cc:57 iso_3dfd register XMM1 iso3dfd R New
55 value += coeff[ir] * (ptr_prev[offset + ir*dimnln2] + ptr_prev[offset — ir*di
56 }
57 ptr next [offset] — 2.0f* ptr prev[offset] - ptr next[offset] + value*ptr vel[offs | v | | Sort By Item Name El

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

FIXING VECTORIZATION

Enabling Vectorization

#fpragma omp parallel for -
Innermost loop is short and may be

for(int iz=0; iz<nz; iz++) { fully unrolled
for(int iy=0; iy<ny; iy++) {

Scalar value can be turned into an

_ _ _ _ array of the same length of the loop

Aens (i enais AE0E eady st) we target for vectorization

int offset = iz*nx*ny + iy*nx + ix;

#pragma omp simd

value[ix] += ptr prev[offset]*coeff[0]; Loop in x can now be vectorized

#pragma unroll (8)
for(int ir=1; ir<=8; ir++) {
value[ix] += coeff[ir] * (ptr_prev[offset + ir] + ptr prev[offset - ir]);

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Roofline Changes

xQ B v |cores: 272 ¥ + || Y Defautt FLOAT + || i* 4 Compared Results v =
10000 48 . . p—
= Pyt S =T SF. Vector FMA Peak: 570933 GFLOPS __
DP Vector FljA Be FLOPS
SF Vsetor Ad Péak FLOPS
1000 - Db Vodtor A Podk. 1425 35 GFLORS "
100 {388
Great overall improvement!
Now only below L2 BW and
101
omp Vector FP limits
1 -
¥
® base i
FLOP//Byte (Arthmetic Intensity)
T T T T
001 01 1 10
Physical Cores: 272 ¥ App Threads: 64 ® Self Elapsed Time: 0.240 s Total Time: 14.180s

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

What Next?

Elapsed Time ”: 1.932s Since we started this tuning session the
Effective CPU Utilization : 5.8% [& _appllcatlon performance has been
Average Effective CPU Utilization “: 15.845 out of 272 |mproved by 508X

serial Time (outside parallel regions) " 1.450s (75.1%) &
Top Serial Hotspots (outside parallel regions)

Speedup after vectorization is 2x

Parallel Region Time " 0.482s (24.9%)
Effective CPU Utilization Histogram

But | have 512bits = 16 SP FP ops, what is

Back-End Bound ~: 74.3% [of Pipeline Slots

L2 Hit Bound - 100.0% ® of Clockticks gOI ng (0] n?
L2 Miss Bound 89.3% & of Clockticks

MCDRAM Bandwidth Bound ~- 24 3% ®

DRAM Bandwidth Bound - 0.0%

Bandwidth Utilization Histogram

SIMD Instructions per Cycle : 0.147

Instruction Mix:

i et - 100.0% Serial time dominates execution, and

% of Scalar SIMD Instr. . 0.0%

overall characteristics have changed

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Further Optimization Opportunities

At this point we can continue to use the same
techniques to optimize the code, but we should
increase the workload size or skip the startup serial
section.

The "Code Analytics” tab in Intel® Advisor is useful
to investigate vectorization efficiency in detail

In this case an estimated 14/16 efficiency is
achieved, so there is room for improvement - note
the “Unaligned access in vector Loop”

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Source | Top Down | Code Analytics | £ bly |@ Rec ati aw

Loop in iso_JdfdSompSparalie! for@45 af iso3dfd.cc:50

14.180s

Vectorized (Body) Total fim

AVX512F_512 14.180s

Instruction Set Selftime

¥ Dynamic Instruction Mix Su!?i!?aa.{m"‘?"
* Memory 44% (2662317504, 84) N
» Compute 2% (95082768, 3)1
» Mixed 53% (3264508368, 103) DN
Other 1% (95082768, 3)1

CPU Total Time
4.47408e-07s | 4.92149e-06s

Fer lferation | Fer Instance

Traits @

FMA

Code Optimizations @
Compiler: Intel(R) C++ Intel(R) 64 Compiler for applications running on
Intel(R) B4,

Version: 18.0.2.19% Build 20180210

Compiler estimated gain: 13.96x

Compiler Notes On Vectorization:
* Cost Model Was Ignored
® Dependency Analysis Was Ignored
* Multi-Pumped by 2
* SIMD
* Unaligned Access in Vector Loop

FOCUS ON PYTHON

Python

Profiling Python is straightforward in VTune™ Amplifier, as long as one does the
following:

= The "application” should be the full path to the python interpreter used

= The python code should be passed as “arguments” to the “application”

In Theta this would look like this:

aprun -n 1 -N 1 amplxe-cl -c hotspots -r res dir \
-- /usr/bin/python3 mycode.py myarguments

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Covariance Matrix

The covariance matrix represents the

Ry ik X1 x,x,] Mathematical generalization of
zW N N variance to multiple dimensions
X%y x> P Fgature variances along Fhe
N N N diagonal and element-wise
cov = covariance along the off-diagonal

= Typically each element is
normalized by the number of
z K Xy Z N X examples in the dataset

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Covariance Matrix Example

[Hotspots by CPU Utilization =

fnalysis Configuration Collection log Summary Bottom-up Caller/Callee Top-down Tree Platform N a'l've i m p le m e ntat i O n Of t h e Cal.C u lati O n Of a

Elapsed Time ~: 8.905s

covariance matrix

Paused Time ~; Os

Top Hotspots

"
This section lists the most active functions in your application. Optimizing these hotspat functions typically results in S u l I l l I I a ry S h OWS B

improving overall application performance.

Function Madule CPU Time
func@0=d7fo0 libpython2 .7.50.1.0 4.050s . .
Py Number_Muttiply 750,14 34805] S le th ead e ec t O
func@0=d7930 0.1.0 0.310s I n r X u I n
func@0=74000 libpython2 750 . 1%
FyEval_EvalCodeEx libpython . 7.50.1.0

0.230s
00s

A 15 appiied o non summable metics.

= Top five time consuming functions

Effective CPU Utilization Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running S
time adds to the Idle CPU utilization value

eously. Spin and Overhead

4005

300s

Elapsed Time

| Average Effective CPU Utilization

Click on top function to go to Bottom-up view

200s
1008

Os

0 50 100 150 200 250

__ M

Simultaneously Utilized Logical CPUs

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of

Bottom-up View and Source Code

INTEL VTUNE AMPLIFIER 2019
£ 55/ 9|

[2 Hompos by CPU Utilization + @
fnalysis Configration Collection Log Summary Bottomp Caller/Callee Top-down Tree Platform

Grouping: | Funerinn 4 Call Srack

CPU Time v = |
Function /Call Smck = T 5 Module Funeton fFul)
Ol E::: ﬁm;:“:‘;:ml Ower Spin Time | Overhend Time ‘ o ‘
Func@0xd7100 39505 0.1005 05 libpython2 7.50.1.0 func@0wd7 00
3.050s 0.100s 0= | covariance py naive(full Array) co
Py Mumber_ultiply 3.400s 0.080s 0s |libpython2.7.50.1.0 Py Mumber_Hultiply
Tunc@0wd7930 03105 @ 0s 0s | lbpython2.7.50.1.0 | func@0wd7930
Tunc@0x74000 02305 @ 0s 0s | lbpython2.7.50.1.0 | func@0x74000
PyEval_EvalCodeEx 02005 8 0s 0s | libpython2.7.50.1.0 | PyEval_EvalCodeEx
<genexpr> 0s 0s | covariance py naive@<genexpra((p. q)) co
Py Thread_acquire_lock [0= | bpython2.7.50.1.0 | PyThiead_acquire_lock
Py Eval_Call ObjectWith Heywords 00205 05 | libpython2.7.s0.1.0 | PyEval_CallObjectWithKeywords
05_BARESYSCALL_DoCallAsminelsdlinux | 0.0355 0s 05 | libe-dynamic s0 05_BARESYSCALL_DoCallAsmintelfdLinux
func@0xcce00 0.030s 0s 0= | multianay.so funci@scee0l
funcinTATn 0nz0. 0e 0 LBbnython? 7.cn 10 fncmneazdin
p:+ L (4| Thread -
E o -
e o itdin
| pin and Qverhend Time:
| ¥ cpu sample
ACHU Utizasion
W/MACPU Time
o M pin nd Overhemd Time

In Bottom-Up we can see the most time
consuming sections of the code listed, as
well as the CPU utilization graph.

For mixed Python/C code a Top-
Down view can often be helpful
to drill down into the C kernels

Double click to see relevant code

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bottom-up View and Source Code

Analysis Configuration Collection Log Summary Bottorn-up Caller/Callee Top-down Tree Platform covariance py HP- H
e o Telnle Inefficient array operation
_____$ I found quickly.
... a Source Efective Time by Ltilization Ll Spin Tim
Didle BPoor 0Ok Bideal @ Ower 5
67 # calculate covariance and populate results array
<] for i in range(numCols):
- e We could use numpy to
L result[i,j] = sum{p*q for p,q in zip(normArrays[i],normirrays[3]3)7 (numRows) im prove On thiS

72 end = time. time()

sum(p*q for p,q in zip(normArrays[i],normArrays[j]))/(numRows)

~

sum(np.multiply(normArrays[i],normArrayslj]))/(numRows)

Optimization Notice

Copyright © 2019, Intel C
*Other names and brands

New Implementation

[Hospos by CPU Utilizatian = @

Analysis Configuration Collection Leg Summary Bottom-up CalleriCallee Top-down Tree Platform We gai n a b O ut 3 . 4X S p eed u p Wit h th i S
Elapsed Time “: 2.588s

CPU Time 2.380s C h a n ge

Total Thread Count: 1
Paused Time ~: Os

Top Hotspots But we are still running sequentially so
This section lists the mast active functions in yvour application. Optimizing these hotspat functions typically results in

i v o PR we should next attempt to parallelize

Function Kodule CPU Time

func@0xd 700 libpython2.7 .s0.1.0 18205 t h e CO d e
Py Eval_Eval CodeEwx libpython2.7 .s0.1.0 0.120s
func@0=d7d70 libpython2 7 .s0.1.0 0.070s

Py Eval _CallObject'WithKeywords libpython2.7 .s0.1.0 0.060s

But at this point you get the idea...

WA 15 appien'to Non-Summalle ECE.

Intel® Advisor and Vtune™ Amplifier's APS will also work with Python,
but possibly miss some of the information available for traditional
C/Fortran codes.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

OTHER THINGS T0 KNOW

Useful Options on Theta

If finalization is slow you can use -finalization-mode=deferred and simply
finalize on a login node or a different machine

If the collection stops because too much data has been collected you can
override that with the -data-limit=0 option (unlimited) or to a number (in MB)

Use the -trace-mpi option to allow VTune™ Amplifier to assign execution to the
correct task when not using the Intel® MPI Library.

Reduce results size by limiting your collection to a single node using an mpmd
style execution:

aprun -n X1 -N Y amplxe-cl -c hpc-performance -r resdir -- ./exe : \
-n X2 -N Y ./exe

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

EMON Collection

General Exploration analysis may be performed using EMON

= Reduced size of collected data

= Qverall program data, no link to actual source (only summary)
= Useful for initial analysis of production and large scale runs

= Currently available as experimental feature

export AMPLXE EXPERIMENTAL=emon

aprun [..] amplxe-cl -c general-exploration -knob summary-mode=true]..]

[Optimization Notice | T
; (intel 62

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Resources

Product Pages

» https://software.intel.com/sites/products/snapshots/application-snapshot

» https://software.intel.com/en-us/advisor

» https://software.intel.com/en-us/intel-vtune-amplifier-xe

Detailed Articles

» https://software.intel.com/en-us/articles/intel-advisor-on-cray-systems

» https://software.intel.com/en-us/articles/using-intel-advisor-and-vtune-amplifier-with-mpi

» https://software.intel.com/en-us/articles/profiling-python-with-intel-vtune-amplifier-a-
covariance-demonstration

» https://software.intel.com/en-us/vtune-amplifier-help-analyzing-statically-linked-binaries-on-
linux-targets

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice -

Performance results are based on testing as of 02/10/2019 and may not reflect all publicly available security updates. See configuration disclosure for details.
No product can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of Intel Corporation
or its subsidiaries in the U.S. and other countries.

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Software

