
Carlos Rosales-Fernandez

February 20th 2019

Intel Confidential

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Tools Covered

 VTune™ Amplifier Application
Performance Snapshot

 Vtune™ Amplifier

 Intel® Advisor

Examples

 3D stencil (C)

 Matrix covariance (Python)

Agenda

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Tuning at Multiple Hardware Levels

Exploiting all features of modern processors requires good use of the available resources

 Core

– Vectorization is critical with 512bit FMA vector units (32 DP ops/cycle)

– Targeting the current ISA is fundamental to fully exploit vectorization

 Socket

‒ Using all cores in a processor requires parallelization (MPI, OMP, …)

‒ Up to 64 Physical cores and 256 logical processors per socket on Theta!

 Node

‒ Minimize remote memory access (control memory affinity)

‒ Minimize resource sharing (tune local memory access, disk IO and network traffic)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Tuning Workflow

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Iso3DFD - A Simple 3D Stencil

 For computing Pt+1(x,y,z), we need to use all neighbors in the 3
dimensions of Pt(x,y,z).

 The stencil looks like a 3D cross in Iso3DFD

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Iso3DFD 2D CUT

This is a 2D cut of our 3D volume

We create a perturbation and look at the pressure for 4 different time steps

We see that there is no boundary condition

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Naïve Wave Propagation Kernel Implementation

for(int ix=0; ix<nx; ix++) {

for(int iy=0; iy<ny; iy++) {

for(int iz=0; iz<nz; iz++) {

int offset = iz*nx*ny + iy*nx + ix;

float value = 0.0;

value += ptr_prev[offset]*coeff[0];

for(int ir=1; ir<=8; ir++) {

value += coeff[ir] * (ptr_prev[offset + ir] + ptr_prev[offset - ir]);

value += coeff[ir] * (ptr_prev[offset + ir*nx] + ptr_prev[offset - ir*nx]);

value += coeff[ir] * (ptr_prev[offset + ir*nx*ny] + ptr_prev[offset - ir*nx*ny]);

}

ptr_next[offset] = 2.0f* ptr_prev[offset] - ptr_next[offset] + value*ptr_vel[offset];

}}}

• 3D Finite Difference

• Acoustic isotropic, pressure only scheme

• 16th order in space 2nd order in time

• No proper boundary conditions for this example

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Hardware

For the rest of the presentation we are using the following system configuration

 Intel® Xeon Phi™ Processor 7250 @ 1.4 GHz

 Each processor as 68 cores

 Each core has 4 hyperthreads

 16 GB on-chip MCDRAM

 96 GB DDR4

 Memory configured in cache-quadrant mode

This is only slightly different from the 7230 processors in Theta, and the
instructions have been customized to work there without modification.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Baseline Version

We start with a naïve implementation that includes several performance impacting
mistakes. Among other things this version should show:

 No parallelization

 No vectorization

 Sub-optimal memory accesses

Let’s pretend we know nothing about this code and simply follow the tuning workflow to
answer the following questions:

 Is the code performing well overall?

 How much room for improvement is there?

 Where is the principal bottleneck?

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

VTune™ Amplifier’s Application Performance
Snapshot
High-level overview of application performance

 Identify primary optimization areas

 Recommend next steps in analysis

 Extremely easy to use

 Informative, actionable data in clean HTML report

 Detailed reports available via command line

 Low overhead, high scalability

12

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Application Performance Snapshot on Theta

Launch all profiling jobs from /projects rather than /home

No module available, so setup the environment manually:

$ source /opt/intel/vtune_amplifier/apsvars.sh

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/vtune_amplifier/lib64

$ export PMI_NO_FORK=1

Launch your job in interactive or batch mode:

$ aprun -N <ppn> -n <totRanks> [affinity opts] aps ./exe [argsuments]

Produce text and html reports:

$ aps -report=./aps_result_YYYMMDD

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

• Subpar performance in all areas

• Most severe issues related to CPU
utilization

• First, let’s figure out if optimizing
this code is worth our time

Overall Performance for Baseline Version

Additional information would
be available if this version was
OpenMP* or MPI enabled

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Intel® Advisor

Modern HPC processors explore different level of parallelism:

 between the cores: multi-threading (Theta: 64 cores, 256 threads)

 within a core: vectorization (Theta: 8 DP elements, 16 SP elements)

Adapting applications to take advantage of such high parallelism is quite
demanding and requires code modernization

The Intel® Advisor is a software tool for vectorization and thread prototyping

The tool guides the software developer to resolve issues during the
vectorization process

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Typical Vectorization Optimization Workflow

There is no need to recompile or relink the application, but the use of -g is
recommended.

1. Collect survey and tripcounts data

 Investigate application place within roofline model

 Determine vectorization efficiency and opportunities for improvement

2. Collect memory access pattern data

 Determine data structure optimization needs

3. Collect dependencies

 Differentiate between real and assumed issues blocking vectorization

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FMA Peak

Vector Add Peak

Scalar Add Peak

17

Cache-Aware Roofline
Next Steps

If under or near a
memory roof…

If just above the
Scalar Add Peak

If Under the Vector Add Peak

If under the
Scalar Add Peak…

FLOPS

Arithmetic Intensity

• Try a MAP analysis.
Make any appropriate
cache optimizations.

• If cache optimization
is impossible, try
reworking the
algorithm to have a
higher AI.

Check “Traits” in the Survey to see if FMAs are
used. If not, try altering your code or compiler
flags to induce FMA usage.

Check vectorization
efficiency in the Survey.
Follow the
recommendations to
improve it if it’s low.

Check the Survey Report
to see if the loop
vectorized. If not, try to
get it to vectorize if
possible. This may involve
running Dependencies to
see if it’s safe to force it.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Using Intel® Advisor on Theta

Two options to setup collections: GUI (advixe-gui) or command line (advixe-cl).

I will focus on the command line since it is better suited for batch execution, but the GUI
provides the same capabilities in a user-friendly interface.

I recommend taking a snapshot of the results and analyzing in a local machine (Linux, Windows,
Mac) to avoid issues with lag.

Some things of note:

 Use /projects rather than /home for profiling jobs

 Set your environment:

$ source /opt/intel/advisor/advixe-vars.sh

$ export LD_LIBRARY_PATH=/opt/intel/advisor/lib64:$LD_LIBRARY_PATH

$ export PMI_NO_FORK=1

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Sample Script

#!/bin/bash

#COBALT -t 30

#COBALT -n 1

#COBALT -q debug-cache-quad

#COBALT -A <project>

export LD_LIBRARY_PATH=/opt/intel/advisor/lib64:$LD_LIBRARY_PATH

source /opt/intel/advisor/advixe-vars.sh

export PMI_NO_FORK=1

aprun -n 1 -N 1 advixe-cl -c roofline --project-dir ./adv -- ./exe [args]

Basic scheduler info (the usual)

Environment setup

Invoke Intel® Advisor

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Intel® Advisor Summary

Collect roofline data

Check for data
access inefficiencies

Verify that vectorization
is possible

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Roofline and Room for Improvement

Performance is far from any
hardware limit
 Below DRAM BW
 Below FP scalar add peak

It seems worthwhile to invest
some time in optimizing this
code

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

Intel® VTune™ Amplifier

VTune Amplifier is a full system profiler

 Accurate

 Low overhead

 Comprehensive (microarchitecture, memory, IO, treading, …)

 Highly customizable interface

 Direct access to source code and assembly

Analyzing code access to shared resources is critical to achieve good
performance on modern systems

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

Predefined Collections

Many available analysis types:

 advanced-hotspots Advanced Hotspots
 concurrency Concurrency
 disk-io Disk Input and Output
 general-exploration General microarchitecture exploration
 gpu-hotspots GPU Hotspots
 gpu-profiling GPU In-kernel Profiling
 hotspots Basic Hotspots
 hpc-performance HPC Performance Characterization
 locksandwaits Locks and Waits
 memory-access Memory Access
 memory-consumption Memory Consumption
 system-overview System Overview
 …

Python Support

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The HPC Performance Characterization Analysis

Threading: CPU Utilization
 Serial vs. Parallel time

 Top OpenMP regions by potential gain

 Tip: Use hotspot OpenMP region analysis
for more detail

Memory Access Efficiency
 Stalls by memory hierarchy

 Bandwidth utilization

 Tip: Use Memory Access analysis

Vectorization: FPU Utilization
 FLOPS † estimates from sampling

 Tip: Use Intel Advisor for precise metrics
and vectorization optimization † For 3rd, 5th, 6th Generation Intel® Core™ processors and second generation

Intel® Xeon Phi™ processor code named Knights Landing.

24

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

Memory Access Analysis

Tune data structures for performance
 Attribute cache misses to data structures

(not just the code causing the miss)

 Support for custom memory allocators

Optimize NUMA latency & scalability
 True & false sharing optimization
 Auto detect max system bandwidth
 Easier tuning of inter-socket bandwidth

Easier install, Latest processors
 No special drivers required on Linux*
 Intel® Xeon Phi™ processor MCDRAM (high

bandwidth memory) analysis

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

VTune™ Amplifier on Theta

Two options to setup collections: GUI (amplxe-gui) or command line (amplxe-cl).

I will focus on the command line since it is better suited for batch execution, but the GUI provides the
same capabilities in a user-friendly interface.

Some things of note:

 Use /projects rather than /home for profiling jobs

 Set your environment:

$ source /opt/intel/vtune_amplifier/amplxe-vars.sh

$ export LD_LIBRARY_PATH=/opt/intel/vtune_amplifier/lib64:$LD_LIBRARY_PATH

$ export PMI_NO_FORK=1

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

Sample Script

#!/bin/bash

#COBALT -t 30

#COBALT -n 1

#COBALT -q debug-cache-quad

#COBALT -A <project>

export LD_LIBRARY_PATH=/opt/intel/vtune_amplifier/lib64:$LD_LIBRARY_PATH

source /opt/intel/vtune_amplifier/amplxe-vars.sh

export PMI_NO_FORK=1

export OMP_NUM_THREADS=64; export OMP_PROC_BIND=spread; export OMP_PLACES=cores

aprun -n 1 -N 1 -cc depth -d 256 -j 4 amplxe-cl -c hpc-performance -r ./vtune_hpc -- ./exe [args]

Basic scheduler info (the usual)

Environment setup

Invoke VTune™ Amplifier

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

HPC Performance
Baseline Results

Things look bad:

 Less than 1% CPU utilization

 Over 82% of pipeline slots
stalled on memory access

No vectorization, but at this point
this is a secondary factor

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
29

Note the default CPU utilization
histogram has very aggressive targets

 Not all codes will take advantage of
4 threads / core

 We can reasonably expect good
scalability to at least 1 thread / core

 Clearly we need threading to make
better use of this system

CPU Utilization Details

30

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

Parallelization with OpenMP*

#pragma omp parallel for

for(int ix=0; ix<nx; ix++) {

for(int iy=0; iy<ny; iy++) {

for(int iz=0; iz<nz; iz++) {

int offset = iz*nx*ny + iy*nx + ix;

float value = 0.0;

value += ptr_prev[offset]*coeff[0];

for(int ir=1; ir<=8; ir++) {

value += coeff[ir] * (ptr_prev[offset + ir] + ptr_prev[offset - ir]);

value += coeff[ir] * (ptr_prev[offset + ir*nx] + ptr_prev[offset - ir*nx]);

value += coeff[ir] * (ptr_prev[offset + ir*nx*ny] + ptr_prev[offset - ir*nx*ny]);

}

ptr_next[offset] = 2.0f* ptr_prev[offset] - ptr_next[offset] + value*ptr_vel[offset];

}}}

Adding OpenMP* in outer loop to
have sufficient work per thread

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
32

Roofline Comparison

omp

base

Significant improvement,
but still far from the
DRAM BW limit or any FP
throughput limits

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
33

Large runtime improvement (~43x)

Threading is not perfect

 Some amount of serial time

 14% imbalance in parallel region

CPU utilization is 51 / 272

 Really 51 / 64 (~80%) since we used
only 64 OpenMP* threads

 More threads lead to additional
memory conflicts and only minor
performance improvements in this
case (not shown).

New HPC Performance
Results (CPU)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
34

Over 75% of execution pipeline slots
spent in data access stalls

Performance bound by misses on L2
cache access

 Forces expensive memory accesses

 Note breakdown between demand
and prefetcher request origin

Technically not bandwidth bound, but
clearly serious issues with data access.

New HPC Performance
Results (Memory)

BW domain options are DDR and MCDRAM
(most useful for flat mode configurations)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
35

Bottom-Up view

Lots of information

 Read/write bandwidth timeline
for DRAM and MCDRAM

 Thread activity timeline,
including spin and overhead

 Double clicking on the top time
consuming line opens the source
code view

In multi-socket systems the UPI
traffic timeline is also shown

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
36

Summary completely focused on data
access

 L2 hit rate and miss counts

 MCDRAM hit and miss rates

 Estimated % of time spent bound by
L2 access, MCDRAM access, DDR
access

 No CPU utilization data

Just invoke

[…] amplxe-cl -c memory-access […]

The memory-access
Analysis

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
37

Similar view to hpc-performance but
focused on memory bw utilization
timelines

Bottom-Up Details Using memory-access

Specific counts now available for both
demand and HW prefetcher initiated
accesses

Double click the most expensive section
to go to the detailed source view

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
38

Investigating Memory Access Issues

While you could look at the main loop VTune™ Amplifier has identified and
probably figure out what is gong on in this case we have a way to pinpoint the
cause of this issues directly.

 A Memory Access Pattern (MAP) analysis in Intel® Advisor will help here

 MAP is a refinement analysis, so you must have collected roofline data
(survey and trip counts) prior to the map analysis, and use the same project
directory:

[…] advixe-cl -c map --project-dir=./adv […]

 This kind of detailed analysis can take a significant amount of time. Try
reducing the number of iterations to minimize the execution time

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
39

Memory Access Pattern Results
All of this are inefficient

Wrong loop order
or indexing??

40

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
41

Incorrect Loop Ordering 

#pragma omp parallel for

for(int iz=0; iz<nz; iz++) {

for(int iy=0; iy<ny; iy++) {

for(int ix=0; ix<nx; ix++) {

int offset = iz*nx*ny + iy*nx + ix;

float value = 0.0;

value += ptr_prev[offset]*coeff[0];

for(int ir=1; ir<=8; ir++) {

value += coeff[ir] * (ptr_prev[offset + ir] + ptr_prev[offset - ir]);

value += coeff[ir] * (ptr_prev[offset + ir*nx] + ptr_prev[offset - ir*nx]);

value += coeff[ir] * (ptr_prev[offset + ir*nx*ny] + ptr_prev[offset - ir*nx*ny]);

}

ptr_next[offset] = 2.0f* ptr_prev[offset] - ptr_next[offset] + value*ptr_vel[offset];

}}}

Loop exchange needed to minimize
jumping around in the memory space.

Order shown here is correct.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
42

Significant speedup once again (~6x)

 No longer bound by L2 misses

 Serial time starts to become a concern (37.4%)

 Bottleneck now moves to CPU performance again

 Looks like main loop is not vectorized at all

Updated hpc-performance Analysis

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
43

Investigate Further - Roofline

No vectorization

Let’s get some details!

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
44

Roofline Changes

mem

omp

base

Significant improvement,
but still well below any
FP hardware limits

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
45

Survey Information

Problem is clearly described

Next Step

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
46

dependencies is a refinement analysis, so you must have collected
roofline data (survey and trip counts) prior to the map analysis, and use
the same project directory:

[…] advixe-cl -c dependencies --project-dir=./adv […]

dependencies Analysis

This kind of detailed analysis can take a significant
amount of time.

Reduce the number of iterations and problem size to
minimize execution time.

Once completed a new section will appear in the
Summary tab

Problem!

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
47

dependencies Analysis Details

Lots of details on report
 Issue is at the core of the compute

loop
 Compiler was right - this is a true

dependency
 Type of issue is Read-After-Write

(RAW)
 Read and write locations shown

Now that the issue is clear we can fix it
simply by using an array variable for
“value”

Let’s do this and see if the section can
be vectorized

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
49

Enabling Vectorization

#pragma omp parallel for

for(int iz=0; iz<nz; iz++) {

for(int iy=0; iy<ny; iy++) {

#pragma omp simd

for(int ix=0; ix<nx; ix++) {

int offset = iz*nx*ny + iy*nx + ix;

value[ix] += ptr_prev[offset]*coeff[0];

#pragma unroll(8)

for(int ir=1; ir<=8; ir++) {

value[ix] += coeff[ir] * (ptr_prev[offset + ir] + ptr_prev[offset - ir]);

...

Innermost loop is short and may be
fully unrolled

Scalar value can be turned into an
array of the same length of the loop
we target for vectorization

Loop in x can now be vectorized

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
50

Roofline Changes

base

omp

mem

vec

Great overall improvement!
Now only below L2 BW and
Vector FP limits

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
51

Since we started this tuning session the
application performance has been
improved by 508x

Speedup after vectorization is 2x

But I have 512bits = 16 SP FP ops, what is
going on?

What Next?

Serial time dominates execution, and
overall characteristics have changed

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
52

At this point we can continue to use the same
techniques to optimize the code, but we should
increase the workload size or skip the startup serial
section.

The “Code Analytics” tab in Intel® Advisor is useful
to investigate vectorization efficiency in detail

In this case an estimated 14/16 efficiency is
achieved, so there is room for improvement - note
the “Unaligned access in vector Loop”

Further Optimization Opportunities

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
54

Python

Profiling Python is straightforward in VTune™ Amplifier, as long as one does the
following:

 The “application” should be the full path to the python interpreter used

 The python code should be passed as “arguments” to the “application”

In Theta this would look like this:

aprun -n 1 -N 1 amplxe-cl -c hotspots -r res_dir \

-- /usr/bin/python3 mycode.py myarguments

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
55

The covariance matrix represents the
mathematical generalization of
variance to multiple dimensions

 Feature variances along the
diagonal and element-wise
covariance along the off-diagonal

 Typically each element is
normalized by the number of
examples in the dataset

Covariance Matrix

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
56

Naïve implementation of the calculation of a
covariance matrix

Summary shows:

 Single thread execution

 Top five time consuming functions

Covariance Matrix Example

Click on top function to go to Bottom-up view

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
57

Bottom-up View and Source Code

In Bottom-Up we can see the most time
consuming sections of the code listed, as
well as the CPU utilization graph.

Double click to see relevant code

For mixed Python/C code a Top-
Down view can often be helpful
to drill down into the C kernels

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
58

Bottom-up View and Source Code

Inefficient array operation
found quickly.

We could use numpy to
improve on this.

sum(np.multiply(normArrays[i],normArrays[j]))/(numRows)

sum(p*q for p,q in zip(normArrays[i],normArrays[j]))/(numRows)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
59

We gain about 3.4x speedup with this
change

But we are still running sequentially so
we should next attempt to parallelize
the code

But at this point you get the idea…

New Implementation

Intel® Advisor and Vtune™ Amplifier’s APS will also work with Python,
but possibly miss some of the information available for traditional
C/Fortran codes.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
61

Useful Options on Theta

If finalization is slow you can use -finalization-mode=deferred and simply
finalize on a login node or a different machine

If the collection stops because too much data has been collected you can
override that with the -data-limit=0 option (unlimited) or to a number (in MB)

Use the -trace-mpi option to allow VTune™ Amplifier to assign execution to the
correct task when not using the Intel® MPI Library.

Reduce results size by limiting your collection to a single node using an mpmd
style execution:

aprun -n X1 -N Y amplxe-cl -c hpc-performance -r resdir -- ./exe : \

-n X2 -N Y ./exe

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
62

EMON Collection

General Exploration analysis may be performed using EMON

 Reduced size of collected data

 Overall program data, no link to actual source (only summary)

 Useful for initial analysis of production and large scale runs

 Currently available as experimental feature

export AMPLXE_EXPERIMENTAL=emon

aprun […] amplxe-cl –c general-exploration -knob summary-mode=true[…]

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
63

Resources

Product Pages

 https://software.intel.com/sites/products/snapshots/application-snapshot

 https://software.intel.com/en-us/advisor

 https://software.intel.com/en-us/intel-vtune-amplifier-xe

Detailed Articles

 https://software.intel.com/en-us/articles/intel-advisor-on-cray-systems

 https://software.intel.com/en-us/articles/using-intel-advisor-and-vtune-amplifier-with-mpi

 https://software.intel.com/en-us/articles/profiling-python-with-intel-vtune-amplifier-a-
covariance-demonstration

 https://software.intel.com/en-us/vtune-amplifier-help-analyzing-statically-linked-binaries-on-
linux-targets

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice <

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

64

Performance results are based on testing as of 02/10/2019 and may not reflect all publicly available security updates. See configuration disclosure for details.
No product can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of Intel Corporation
or its subsidiaries in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

