
OpenMP® offload capabilities in
oneAPI HPC Toolkit
Jeongnim Kim, PhD
Principal Engineer
Intel Corporation
jeongnim.kim@intel.com
June 24, 2020

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

2

Agenda
• OpenMP® for accelators

• Managing data movement

• Expressing Parallelisms

• Data parallelism

• Hierarchical parallelism

• CPU-GPU parallelism

• Coming-soon features

• Conclusions

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

3

OpenMP® for developing parallel applications
https://www.openmp.org/

a portable, scalable model that gives programmers a simple and flexible
interface for developing parallel applications for a wide range of platforms –
Wikipedia

Resources
• ALCF OpenMP training
• https://github.com/UoB-HPC/openmp-tutorial
• oneAPI webinar on OpenMP, Xinmin Tian, Intel

SGI/Cray Origin 2000,
NCSA, 1997

Tile

MC MC

EDC EDC EDC EDC

EDC EDCEDC EDC

3
DD

R
4

ch
an

ne
ls

3
DD

R
4

ch
an

ne
ls

Misc

PCIe 3 DMI

MCDRAMMCDRAM MCDRAMMCDRAM

MCDRAMMCDRAM MCDRAMMCDRAM

Intel® Xeon + Xe, 2021

Intel KNL, Theta, ALCF

https://www.alcf.anl.gov/support-center/aurora/openmp-programming-model
https://github.com/UoB-HPC/openmp-tutorial
https://techdecoded.intel.io/essentials/run-hpc-apps-on-cpus-and-xe-gpus-using-intel-c-fortran-compilers-with-openmp/

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

4

OpenMP® APIs for heterogeneous systems

Provide a set of directives to instruct
the compiler and runtime to offload a
block of code to the device.

Allow applications to exploit much
increased compute density and BW
of accelerators, such as Xe GPU.

Xeon Socket Xeon Socket

Xe

Xe

Xe

Xe

Xe

Xe

Schematics of Aurora Supernode

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

5

Reminders for the developers of parallel codes on
heterogeneous platforms with discrete GPUs
§ Massively parallel but simple compute engines

§ 72-EU Gen9: 72 EU *7 threads*32 SIMD= 16128
§ Expect big increases for future Xe

§ Thread blocks, block of threads and SIMD (WARP, wavefront)
§ Memory model, forward progress guarantee, synchronization

§ Distinct memory spaces of host and GPUs
§ Where the data are allocated and reside and how to move are critical
§ Unified Shared/Virtual Memory removes the need for the programmers to explicitly

move data but does not remove data movement
§ Heterogeneous and hierarchical memory

§ Memory BW: host-host, host-GPU, HBM/DDR on GPUs, Cache

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

6

Intel Confidential – CNDA required 6

Design your code to efficiently offload to accelerators
• Determine if your code would benefit from offload to accelerator – even before you have the hardware
• Identify the opportunities to offload
• Project performance on accelerators
• Estimate overhead from data transfers and kernel launch costs
• Pinpoint accelerator performance bottlenecks (memory, cache, compute and data transfer)
• Follow good SIMD guidelines (e.g. avoid branch divergence and gathers/scatters)

Offloaded

Host Host Host(CPU) (CPU)

Host Host Host(Accelerator) (Accelerator)

Original

Data transfer costs
and overhead

Time

Offload Where it Pays Off the Most

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others. 7

CPU AI / FPGA

Direct Programming API-based Programming

HPC C/C++ and Fortran Optimized Applications

AI/Math Parallel Visual

MKL-DNN TBB OpenVino

MKL Parallel
STL DLDT

MLSL MPI Media SDK

DAAL IPP

Data
Parallel

C++

OpenMP
C/C++

OpenMP
FORTRAN

Future
languages

Porting
tools

Analysis
tools:

Debuggers
Profilers
Advisors

Unified, LLVM-based backend

Runtimes

OS, CSA driver, or GPU driver, OpenCL RT, low-level runtime, etc.

GPU / Xe Accelerator

Intel® oneAPI HPC Toolkit (beta)

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

8

OpenMP® using oneAPI® compilers
Based on beta07 release http://www.oneapi.com

§ Download and install oneAPI HPC Toolkit
§ Setup oneAPI environment

$source /opt/intel/inteloneapi/setvars.sh

§ Compile a C++ application OpenMP target (offload)
$icpx –fiopenmp –fopenmp-targets=spir64 test.cpp

$icpc –qnextgen –fiopenmp –fopenmp-targets=spir64 test.cpp

§ Compile an application using oneMKL
$icx –I${MKLROOT}/include –DMKL_ILP64 –m64 –fiopenmp
–fopenmp-targets=spir64 –c <file>.c{pp} –o <file>.o
$icx <file>.o –fiopenmp –fopenmp-targets=spir64 –lOpenCL
-L${MKLROOT}/lib/intel64 -lmkl_intel_ilp64 -lmkl_intel_thread \
-lmkl_core -lpthread -ldl -lm -o <file>

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

OpenMP® using oneAPI® compilers

• Useful environments for a run
LIBOMPTARGET_DEBUG=<int>
LIBOMPTARGET_PROFILE=T
OMP_TARGET_OFFLOAD=MANDATORY|DISABLED|DEFAULT

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

10

Matrix-vector multiplication (GEMV)

= A

Using pseduo codes inspired and based on miniapps, Ye Luo (ANL), QMPCACK ECP
https://github.com/QMCPACK/miniqmc/

X

Y

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

11

Parallel Matrix-vector multiplication

=

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

12

Parallel-SIMD Matrix-vector multiplication

=

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

13

Compose your parallel problem
OMP_NESTED=TRUE

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

14

GEMV with OpenMP® 4.5
1. Transfer control of execution to a device
2. Map A and X to a device
3. Map Y from a device to host
4. Create teams of threads
5. Distribute the loop
6. Execution the loop in parallel
7. Reduce sum within a team
8. Assign the sum to Y

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

• Use target construct to
• Transfer control from

the host to the target
device

• Map variables between
the host and target
device data
environments

• Host thread waits until offloaded region is completed
• Use other OpenMP tasks for asynchronous execution

• The map clauses determine how an original variable in a data environment is
mapped to a corresponding variable in a device data environment

Host Device

#pragma omp target \

alloc(…)
1

from(…)
3

to(…)
2

pA

map(alloc:...) \
map(to:...) \

{ ... }
map(from:...)

Offloading and Device Data Mapping

15

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

16

Data management

§ Device allocator for the data
exclusive accessed by a device

int deviceId= … ; // query device id

int *a = (int *)omp_target_alloc(1024, deviceId);

<use a>

omp_target_free(a, deviceId);

§ Target data enter/exit and
update

int A[N], B[N];

#pragma omp target enter data map(alloc:B) map(to:A)

// do a lot of work with A & B

#pragma omp target update(A)

// do more on a device and host with new A

#pragma omp exit data map(from:A)

§ Allocator specializations to reduce clutter and optimize data transfers

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

17

Maximizing data parallelism

§ Same tasks/computations performed on subsets of the same data

§ Synchronous computations with no or minimal branches

§ Increasing gain with larger data sets

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

18

Hierarchical parallelism on a GPU
§ Nested loops with

shared variables

§ Limited parallelism

§ Data dependencies
within a team

§ Potential data reuse

§ But, use with care!

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

19

Mixing host and GPU parallelism

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

20

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#define SIZE 1024

#pragma omp requires unified_shared_memory
int main() {
int deviceId = (omp_get_num_devices() > 0) ? omp_get_default_device() : omp_get_initial_device();
int *a = (int *)omp_target_alloc(SIZE, deviceId);
int *b = (int *)omp_target_alloc(SIZE, deviceId);
for (int i = 0; i < SIZE; i++) {
a[i] = i; b[i] = SIZE - i;

}
#pragma omp target parallel for
for (int i = 0; i < SIZE; i++) {

a[i] += b[i];
}

for (int i = 0; i < SIZE; i++) {

if (a[i] != SIZE) {
printf("%s failed\n", __func__); return EXIT_FAILURE;

}
}
omp_target_free(a, deviceId);
omp_target_free(b, deviceId);
printf("%s passed\n", __func__);
return EXIT_SUCCESS;

}

Adding USM support via managed
memory allocator

Unified Shared Memory Support

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

21

#include <CL/sycl.hpp>
#include <array>
#include <iostream>
float computePi(unsigned N) {
float Pi;
#pragma omp target map(from : Pi)
#pragma omp parallel for reduction(+ : Pi)

for (unsigned I = 0; I < N; ++I) {
float T = (I + 0.5f) / N;
Pi += 4.0f / (1.0 + T * T);

}
return Pi / N;

}
// DPC++ Code
void iota(float *A, unsigned N) {

cl::sycl::range<1> R(N);
cl::sycl::buffer<int,1> X(A, R);
cl::sycl::queue().submit([&](cl::sycl::handler &cgh) {
auto Y = X.template get_access<cl::sycl::access::mode::write>(cgh);
cgh.parallel_for<class Iota>(R, [=](cl::sycl::id<1> idx) {

Y[idx] = idx;
});

});
}

int main() {
std::array<int, 1024u> V;
float Pi;

#pragma omp parallel sections
{

#pragma omp section
iota(V.data(), V.size());

#pragma omp section
Pi = computePi(8192u);

}

std::cout << "V[512] = " << V[512] << std::endl;
std::cout << "Pi = " << Pi << std::endl;
return 0;

}

xtian@scsel-cfl-02:~/temp$ icpx -fiopenmp -fopenmp-targets=spir64 -fsycl compos.cpp -o run.y
xtian@scsel-cfl-02:~/temp$ OMP_TARGET_OFFLOAD=mandatory ./run.y
V[512] = 512
Pi = 3.14159

OpenMP* and DPC++ Composability

OpenMP offloading code

DPC++ code

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

oneMKL C OpenMP offload Example (GEMM)
#include “mkl.h”
#include “mkl_omp_offload.h”

int main() {

MKL_INT m = 10, n = 6, k = 8, lda = 12, ldb = 8, ldc = 10;
MKL_INT sizea = lda * k, sizeb = ldb * n, sizec = ldc * n;
double alpha = 1.0, beta = 0.0;

// Allocate matrices
double *A = (double *)mkl_malloc(sizeof(double) * sizea, 64);
double *B = (double *)mkl_malloc(sizeof(double) * sizeb, 64);
double *C = (double *)mkl_malloc(sizeof(double) * sizec, 64);

// initialize matrices
…

#pragma omp target data map(to:A[0:sizea],B[0:sizeb]) map(tofrom:C[0:sizec])
{

#pragma omp target variant dispatch use_device_ptr(A, B, C) [nowait]
{

// Compute C = A * B on GPU
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, m, n, k,

alpha, A, lda, B, ldb, beta, C, ldc);
}

}
…

}

Specific header file for
oneMKL OpenMP

offload

Use target variant dispatch to
notify GPU computation is

requested

List all device memory
pointer in the

use_device_ptr clause

Optional nowait clause for
asynchronous execution, use

omp taskwait for
synchronization

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

Get Started with oneAPI Today!
Resources

Start in the Cloud - No Download, No
Installation, No Setup – Sign up here -
software.intel.com/devcloud/oneAPI

Intel®
DevCloud

oneAPI
Specification

Join the Initiative - Cross-industry, open,
standards-based unified programming
model across architectures – Learn more
here - oneapi.com

oneAPI
Toolkits

Develop On-Prem – Download &
Develop - Get them here -
software.intel.com/oneAPI

Build XPU Applications
Intel® Xeon, FPGA, Integrated
Graphics GPUs & Xe GPU, DG1**

Interoperable with MPI,
OpenMP, Fortran, C/++

Gaining Momentum!
oneAPI 0.8 Now Available!

** Available under NDA on Intel® DevCloud

Industry
Support

Break Free Now – CodePlay* Contributes
Data Parallel C++ Support for NVIDIA* GPU
github.com/intel/llvm

Prototype Your Project
Evaluate Workloads

23

https://software.intel.com/en-us/devcloud/oneapi
https://oneapi.com/
https://software.intel.com/oneAPI
https://github.com/intel/llvm

Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2020
*Other names and brands may be claimed as the property of others.

24

Notices & Disclaimers
This document contains information on products, services and/or processes in development. All information provided here is subject to change without
notice. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn
more at intel.com, or from the OEM or retailer.

The benchmark results reported herein may need to be revised as additional testing is conducted. The results depend on the specific platform
configurations and workloads utilized in the testing, and may not be applicable to any particular user’s components, computer system or workloads. The
results are not necessarily representative of other benchmarks and other benchmark results may show greater or lesser impact from mitigations.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more complete information visit
www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2020, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its
subsidiaries in the U.S. and other countries. Khronos® is a registered trademark and SYCL is a trademark of the Khronos Group, Inc.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

