KOKKOS PROGRAMMING MODEL

NEVIN LIBER
Argonne National Laboratory
Speaker
The Kokkos Ecosystem

Christian Trott, - Center for Computing Research
Sandia National Laboratories/NM

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.
What is Kokkos?

- A C++ Programming Model for Performance Portability
 - Implemented as a template library on top of CUDA, OpenMP, HPX, SYCL, ...
 - Aims to be descriptive not prescriptive
 - Aligns with developments in the C++ standard
- Expanding solution for common needs of modern science/engineering codes
 - Math libraries based on Kokkos
 - Tools which allow inside into Kokkos
- It is Open Source
 - Maintained and developed at https://github.com/kokkos
 - It has many users at wide range of institutions.
Kokkos 3.4.00

- Released 2021-Apr-26
 - Requires C++14
 - Some backends (e.g., SYCL) require C++17
 - Significant work on OpenMPTarget and SYCL backend functionality
Developer Team

- **Kokkos Core**: 12 Developers
- More code contributions from non-SNL
 - >50% of commits from non-Sandians
- Sandia leads API design
- Other labs lead backend implementations
- Other subprojects largely by Sandia so far

Kokkos Core:
- C.R. Trott, N. Ellingwood, D. Ibanez, V. Dang, Jan Ciesko, L. Cannada, N. Liber, D. Lebrun-Grandie, B. Turcksin, J. Madsen, D. Arndt, R. Gayatri

Kokkos Kernels:
- S. Rajamanickam, L. Berger, V. Dang, N. Ellingwood, E. Harvey, B. Kelley, K. Kim, C.R. Trott, J. Wilke, S. Acer

Kokkos Tools:
- D. Poliakoff, S. Hammond, C.R. Trott, D. Ibanez, S. Moore, L. Cannada

Kokkos Support:
- C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff

pyKokkos:
- M. Gligoric, N. Al Awar, S. Zhu, J. Madsen
Kokkos Core Abstractions

- **Data Structures**
 - Memory Spaces ("Where")
 - HBM, DDR, Non-Volatile, Scratch
 - Memory Layouts
 - Row/Column-Major, Tiled, Strided
 - Memory Traits ("How")
 - Streaming, Atomic, Restrict

- **Parallel Execution**
 - Execution Spaces ("Where")
 - CPU, GPU, Executor Mechanism
 - Execution Patterns
 - parallel_for/reduce/scan, task-spawn
 - Execution Policies ("How")
 - Range, Team, Task-Graph
<table>
<thead>
<tr>
<th>Concept</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel Loops</td>
<td><code>parallel_for(N, KOKKOS_LAMBDA (int i) { ...BODY... });</code></td>
</tr>
<tr>
<td>Parallel Reduction</td>
<td><code>parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) { ...BODY... upd += ... }, Sum<>)(result));</code></td>
</tr>
<tr>
<td>Tightly Nested Loops</td>
<td><code>parallel_for(MDRangePolicy<Rank<3>>(0,N1,N2,N3,T1,T2,T3), KOKKOS_LAMBDA (int i, int j, int k) { ...BODY... });</code></td>
</tr>
</tbody>
</table>
| Non-Tightly Nested Loops | `parallel_for(TeamPolicy<Schedule<Dynamic>>(N, TS), KOKKOS_LAMBDA (Team team) { ... COMMON CODE 1 ...
parallel_for(TeamThreadRange(team, M(N)), [&] (int j) { ... INNER BODY... }); ... COMMON CODE 2 ... });` |
| Task Dag | `task_spawn(TaskTeam(scheduler, priority), KOKKOS_LAMBDA (Team team) { ... BODY });` |
| Data Allocation | `View<double**, Layout, MemSpace> a("A", N, M);` |
| Data Transfer | `deep_copy(a,b);` |
| Atomics | `atomic_add(&a[i], 5.0); View<double*, MemoryTraits<AtomicAccess>> a(); a(i)+=5.0;` |
| Exec Spaces | `Serial, Threads, OpenMP, Cuda, HPX (experimental), HIP (experimental), OpenMPTarget (experimental), DPC++/SYCL (experimental)` |
More Kokkos Capabilities

- MemoryPool
- parallel_scan
- DualView
- ScatterView
- OffsetView
- StaticWorkGraph
- UnorderedMap
- RandomPool
- sort
- StaticWorkGraph
- StaticWorkGraph
- kokkos_malloc
- kokkos_free
- Vector
- LayoutLeft
- LayoutRight
- UniqueToken
- ScratchSpace
- Bitset
- ProfilingHooks
- LayoutStrided
- Reducers
Example: Conjugent Gradient Solver

- Simple Iterative Linear Solver
- For example used in MiniFE
- Uses only three math operations:
 - Vector addition (AXPBY)
 - Dot product (DOT)
 - Sparse Matrix Vector multiply (SPMV)
- Data management with Kokkos Views:

```cpp
View<double*,HostSpace,MemoryTraits<Unmanaged> > h_x(x_in, nrows);
View<double*> x("x",nrows);
deep_copy(x,h_x);
```
CG Solve: The AXPBY

- Simple data parallel loop: Kokkos::parallel_for
- Easy to express in most programming models
- Bandwidth bound
- Serial Implementation:

```c
void axpby(int n, View<double*> z, double alpha, View<const double*> x,
           double beta, View<const double*> y) {
    parallel_for("AXpBY", n, KOKKOS_LAMBDA (const int i) {
        z(i) = alpha*x(i) + beta*y(i);
    });
}
```

- Kokkos Implementation:

```c
void axpby(int n, double* z, double alpha, const double* x,
           double beta, const double* y) {
    for(int i=0; i<n; i++)
        z[i] = alpha*x[i] + beta*y[i];
}
```

Parallel Pattern: for loop

String Label: Profiling/Debugging
Execution Policy: do n iterations
Loop Body
Iteration handle: integer index
CG Solve: The Dot Product

- Simple data parallel loop with reduction: Kokkos::parallel_reduce
- Non trivial in CUDA due to lack of built-in reduction support
- Bandwidth bound
- Serial Implementation:

```c
double dot(int n, const double* x, const double* y) {
    double sum = 0.0;
    for(int i=0; i<n; i++)
        sum += x[i]*y[i];
    return sum;
}
```

- Kokkos Implementation:

```c
double dot(int n, View<const double*> x, View<const double*> y) {
    double x_dot_y = 0.0;
    parallel_reduce("Dot",n, KOKKOS_LAMBDa (const int i,double& sum) {
        sum += x[i]*y[i];
    }, x_dot_y);
    return x_dot_y;
}
```

Parallel Pattern: loop with reduction
Iteration Index + Thread-Local Red. Variable
CG Solve: Sparse Matrix Vector Multiply

- Loop over rows
- Dot product of matrix row with a vector
- Example of Non-Tightly nested loops
- Random access on the vector (Texture fetch on GPUs)

```c
void SPMV(int nrows, const int* A_row_offsets, const int* A_cols,
          const double* A_vals, double* y, const double* x) {
    for(int row=0; row<nrows; ++row) {
        double sum = 0.0;
        int row_start=A_row_offsets[row];
        int row_end=A_row_offsets[row+1];
        for(int i=row_start; i<row_end; ++i) {
            sum += A_vals[i]*x[A_cols[i]];
        }
        y[row] = sum;
    }
}
```
void SPMV(int nrows, View<const int*> A_row_offsets,
View<const int*> A_cols, View<const double*> A_vals,
View<double*> y,
View<const double*, MemoryTraits< RandomAccess>> x) {

// Performance heuristic to figure out how many rows to give to a team
int rows_per_team = get_row_chunking(A_row_offsets);

parallel_for("SPMV:Hierarchy", TeamPolicy< Schedule< Static > >
((nrows+rows_per_team-1)/rows_per_team,AUTO,8),
KOKKOS_LAMBDA (const TeamPolicy<>::member_type& team) {

 const int first_row = team.league_rank()*rows_per_team;
 const int last_row = first_row+rows_per_team<nrows? first_row+rows_per_team : nrows;

 parallel_for(TeamThreadRange(team,first_row,last_row),[&] (const int row) {
 const int row_start=A_row_offsets[row];
 const int row_length=A_row_offsets[row+1]-row_start;
 double y_row;
 parallel_reduce(ThreadVectorRange(team,row_length),[&] (const int i, double& sum) {
 sum += A_vals(i+row_start)*x(A_cols(i+row_start));
 }, y_row);
 y(row) = y_row;
 });
});
}
Performance Comparison: V100 vs MI100

AXPBY and DOT

- **MI100 results are from our own system (lascaux02)**

Launch Latency Benchmark
(Batch Size = # of kernels before fence)
Kokkos Kernels

- BLAS, Sparse and Graph Kernels on top of Kokkos and its View abstraction
 - Scalar type agnostic, e.g. works for any types with math operators
 - Layout and Memory Space aware
- Can call vendor libraries when available
- Views contain size and stride information => Interface is simpler

```c
// BLAS
int M,N,K,LDA,LDB; double alpha, beta; double *A, *B, *C;
dgemm('N','N',M,N,K,alpha,A,LDA,B,LDB,beta,C,LDC);

// Kokkos Kernels
double alpha, beta; View<double**> A,B,C;
gemm('N','N',alpha,A,B,beta,C);
```

- Interface to call Kokkos Kernels at the teams level (e.g. in each CUDA-Block)

```c
parallel_for("NestedBLAS", TeamPolicy<>((N,AUTO), KOKKOS_LAMBDA (const team_handle_t& team_handle) {
  // Allocate A, x and y in scratch memory (e.g. CUDA shared memory)
  // Call BLAS using parallelism in this team (e.g. CUDA block)
  gemv(team_handle,'N',alpha,A,x,beta,y)
});
```
Kokkos Tools

- Profiling
 - New tools are coming out
 - Worked with NVIDIA to get naming info into their system
- Auto Tuning (Under Development)
 - Internal variables such as CUDA block sizes etc.
 - User provided variables
 - Same as profiling: will use dlopen to load external tools
- Debugging (Under Development)
 - Extensions to enable clang debugger to use Kokkos naming information
- Static Analysis (Under Development)
 - Discover Kokkos anti patterns via clang-tidy
Kokkos-Tools Profiling & Debugging

- Performance tuning requires insight, but tools are different on each platform
- KokkosTools: Provide common set of basic tools + hooks for 3rd party tools
- Common issue: abstraction layers obfuscate profiler output
 - Kokkos hooks for passing names on
 - Provide Kernel, Allocation and Region
- No need to recompile
 - Uses runtime hooks
 - Set via env variable
Kokkos Tools Integration with 3rd Party

- Profiling Hooks can be subscribed to by tools, and currently have support for TAU, Caliper, Timemory, NVVP, Vtune, PAPI, and SystemTAP, with planned CrayPat support.

- HPCToolkit also has special functionality for models like Kokkos, operating outside of this callback system.

TAU Example:

```
+ TAU application               0.143    96.743  1   832
+ Comm::exchange               0.001    0.967   6  142
+ Comm::exchange_halo          0.001    4.702   6  184
+ Comm::update_halo            0.004   31.347   95 1,330
  | Kokkos::parallel_for CommMPI::halo_update_pack [device=0] 0.002    0.506   190 190
  | Kokkos::parallel_for CommMPI::halo_update_self [device=0] 0.003    0.597   380 380
  | Kokkos::parallel_for CommMPI::halo_update_unpack [device=0] 0.002    0.97    190 190
  | MPI_recv()                   0.001    0.001   190  0
  | MPI_Send()                   29.268   29.268  190  0
  | MPI_Wait()                   0.001    0.001   190  0
  | OpenMP::Implicit_Task        0.041    1.985   760 760
  | OpenMP::ParallelRegion parallel_for<Kokkos::RangePolicy<CommMPI::Ta> 0.08     0.968   190 190
  | OpenMP::ParallelRegion parallel_for<Kokkos::RangePolicy<CommMPI::Ta> 0.001    0.594   380 380
  | OpenMP::SyncRegion_Barrier parallel_for<Kokkos::RangePolicy<CommMPI> 0.489    0.489   190  0
  | OpenMP::SyncRegion_Barrier parallel_for<Kokkos::RangePolicy<CommMPI> 0.875    0.875   190  0
  | OpenMP::SyncRegion_Barrier void Kokkos::parallel_for<Kokkos::RangePol 0.58     0.58    380  0
```
Kokkos Tools Static Analysis

- clang-tidy passes for Kokkos semantics
- Under active development, requests welcome
- IDE integration

```cpp
// Base case
Kokkos::parallel_for(
    TPolicy, KOKKOS_LAMBDA(TeamMember const& t) {
        int a = 0;
        Kokkos::parallel_for(TTR(t, 1), [&](int i) { Lambda capture modifies reference capture variable 'a' that is a local
        a += 1;
        cv() += 1;
    });
});

// One with variable Lambda
Kokkos::parallel_for(
    TPolicy, KOKKOS_LAMBDA(TeamMember const& t) {
        int b = 0;
        auto lambda = [&](int i) { Lambda capture modifies reference capture variable 'b' that is a local
        b += 1;
        cv() += 1;
    };
    Kokkos::parallel_for(TTR(t, 1), lambda);
});
```
CUDA Graphs & KokkosGraphs

- Kokkos Graphs in Release 3.3 (January 2021) expose CUDA Graphs
 - One Design Principle: less foot guns than CUDA Graphs

- API Design: Scoped creation/Explicit dependencies/no implicit capture

```c++
View<double*> x, y, z;
View<double, CudaHostPinnedSpace> x_dot_z;
double alpha, beta, gamma, threshold;
DefaultExecutionSpace ex();

auto graph = create_graph(ex, [&](auto root) {
    auto f_xpy = root.then_parallel_for(N, axpby_func{alpha,x,beta,y});
    auto f_zpy = root.then_parallel_for(N, axpby_func{gamma,z,beta,y});

    // ____________________________________________________________________
    auto ready = when_all(f_xpy, f_zpy);

    ____________________________________________________________________
    ready.then_parallel_reduce(N, dot_func{x,z}, x_dot_z);
});

while(x_dot_z()<threshold) { graph.submit(); Kokkos::fence(); }
```
Kokkos Graphs Benchmark

Solid: Graphs
Dashed: Simple Dispatch

Can reuse graph:
- In solver iterations
- Between solves if matrix structure unchanged
>100 reuses could be realistic

Throughput Improvement:
- 50K 78%
- 200k 49%
- 1M 15%

Next: look at reducing graph creation time
Kokkos Remote Spaces

Add support for distributed memory spaces to facilitate software development for multi-node and multi-GPU executions.

Allow code reuse to scale across multiple memory address spaces at minimal development effort.

Adds distributed View support through templating on a remote memory space.

Several remote memory space back-ends are supported: MPI One-sided, SHMEM and NVSHMEM.

Underlying implementation allocates data on the symmetric heap (all participants allocate the same size).

In development:

- Data shaping (subviews), block transfers (local_deep_copy) and memory access traits
- Performance optimizations (aggregation and caching)
- Support for other RMA implementations

Examples: First dimension describes PE*. Note: This is a current design choice but subject to change as the PE can be deduced at runtime (at a small cost).
Example: CGSolve

Initial results with CGSolve: (relative to reference implementation with MPI+Cuda)
- 76% perf (1 NUMA)
- 20% perf (2 NUMA)
- Reduction in LOC: 5x

GPU can hide latency of fine-grained remote operations within a NUMA (GPU complex), but not across NIC/interconnect.

Important:
- Packing, reuse and overlapping required
- Implicit Caching and Buffering
Some Kokkos Users
Platform Strategy

<table>
<thead>
<tr>
<th>Name</th>
<th>Perlmutter</th>
<th>Frontier</th>
<th>Aurora</th>
<th>EICapitan</th>
<th>Crossroads</th>
<th>Fugaku</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility</td>
<td>NERSC</td>
<td>ORNL</td>
<td>ANL</td>
<td>LLNL</td>
<td>LANL</td>
<td>RIKEN</td>
</tr>
<tr>
<td>Year</td>
<td>2021</td>
<td>2021</td>
<td>2022</td>
<td>2023</td>
<td>2022</td>
<td>2020</td>
</tr>
<tr>
<td>Hardware</td>
<td>NVIDIA GPU + AMD CPU</td>
<td>AMD GPU + AMD CPU</td>
<td>Intel GPU + Intel CPU</td>
<td>AMD GPU + AMD CPU</td>
<td>Intel CPU</td>
<td>ARM CPU</td>
</tr>
<tr>
<td>Toolchain</td>
<td>NVCC, NVC++</td>
<td>ROCM, Cray</td>
<td>Intel OneAPI</td>
<td>ROCM, Cray</td>
<td>Intel OneAPI, Cray, GCC</td>
<td>Fujitsu, GCC, ARM Clang</td>
</tr>
<tr>
<td>CUDA</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>OpenMP</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>DPC++/SYCL</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>HIP</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

Why OpenMP too?
- Fallback in case of compiler issues
- Interoperability with OpenMP libraries
Kokkos SYCL backend

- SYCL
 - Open standard (Khronos group)
 - Parallel heterogeneous computing
 - Intel implementation called DPC++

- Hardware support
 - Targeting Intel GPUs
 - CI running on NVIDIA V100

- Introduced in Kokkos-3.3 (released in Dec’20)
- Near feature complete in Kokkos-3.4 (Apr’21)
- Using DPC++ extensions of SYCL - may not work with other SYCL implementations
- Not yet implemented
 - atomics for types larger than 64bits
 - WorkGraphPolicy
 - Dynamic Task Graphs
- Future work will focus on performance
- Known to work with SYCL backend: ArborX, Cabana, LAMMPS
Kokkos SYCL backend – V100 Performance

AXPBY
(double scalar type)

DOT
(double scalar type)

parallel_for, AXPY

parallel_reduce, DOT
OpenMPTarget Backend

- Secondary backend for all GPU platforms
- Majority of features are available
- Started working with applications to test the backend

Compiler/Architecture Support Matrix

<table>
<thead>
<tr>
<th>Architecture</th>
<th>clang</th>
<th>icpx</th>
<th>roc</th>
<th>nvhpc</th>
<th>cce</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA (V100)</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>AMD (MI60/MI100)</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Intel (Gen9)</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **support**
- **partial support**
Kokkos HIP backend

• HIP:
 – native language of AMD’s GPU
 – very similar to CUDA
 – supports both Nvidia and AMD’s GPU
 – Still compiler issues -> tracking latest release very closely

• Primary backend for AMD GPUs
 – Do not support NVIDIA GPUs (use CUDA backend instead)

• Introduced in Kokkos-3.1 (released in Apr’20)

• Feature complete except for dynamic tasking
 – Focus so far has been on adding feature, now moving to performance

• We require ROCm 3.8, we will require 4.1 soon
Links

https://github.com/kokkos Kokkos Github Organization
- **Kokkos**: Core library, Containers, Algorithms
- **Kokkos-Kernels**: Sparse and Dense BLAS, Graph, Tensor (under development)
- **Kokkos-Tools**: Profiling and Debugging
- **Kokkos-MiniApps**: MiniApp repository and links
- **Kokkos-Tutorials**: Extensive Tutorials with Hands-On Exercises

- https://cs.sandia.gov Publications (search for ’Kokkos’)
 - Many Presentations on Kokkos and its use in libraries and apps
- http://on-demand-gtc.gputechconf.com Recorded Talks
 - Presentations with Audio and some with Video
- https://kokkosteam.slack.com Slack channel for user support
Kokkos: The Lectures

- 8 lectures covering most aspects of Kokkos
- 15 hours of recordings
- > 500 slides
- >20 exercises
- Extensive Wiki
 - API Reference
 - Programming Guide
- Slack as primary direct support

https://kokkos.link/the-lectures

- **Module 1: Introduction**
 - Introduction, Basic Parallelism, Build System
- **Module 2: Views and Spaces**
 - Execution and Memory Spaces, Data Layout
- **Module 3: Data Structures and MDRangePolicy**
 - Tightly Nested Loops, Subviews, ScatterView,...
- **Module 4: Hierarchical Parallelism**
 - Nested Parallelism, Scratch Pads, Unique Token
- **Module 5: Advanced Optimizations**
 - Streams, Tasking and SIMD
- **Module 6: Language Interoperability**
 - Fortran, Python, MPI and PGAS
- **Module 7: Tools**
 - Profiling, Tuning, Debugging, Static Analysis
- **Module 8: Kokkos Kernels**
 - Dense LA, Sparse LA, Solvers, Graph Kernels
THANK YOU