

Polaris

Polaris will provide a platform utilizing several of the Aurora technologies and similar architectures to provide ALCF staff and users a platform for early scaling and testing purposes.

PEAK PERFORMANCE

44 Petaflop DP

NVIDIA GPU

A100

AMD EPYC PROCESSOR

Rome*

PLATFORM

HPE Apollo Gen10+

Compute Node

1 AMD EPYC 7532* processor; 4 NVIDIA A100 GPUs; Unified Memory Architecture; 2 fabric endpoints; 2 NVMe SSDs

GPU Architecture

NVIDIA A100 GPU; HBM stack

Processor Interconnects

CPU-GPU: PCIe GPU-GPU: NVLink

System Interconnect

HPE Slingshot 10*; Dragonfly topology with adaptive routing

*Initial technology to be upgraded later

Network Switch

25.6 Tb/s per switch, from 64–200 Gb/s ports (25 GB/s per direction)

Programming Models

CUDA, MPI, OpenMP, C/C++, Fortran, DPC++

Node Performance

78 TF

Aggregate Memory

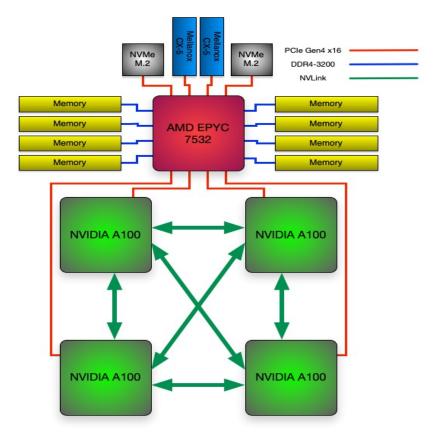
368 TB (88 BG GPU, 280 CPU)

System Size

40 racks 560 CPUs 2240 GPUs 560 nodes, 1.78 MW

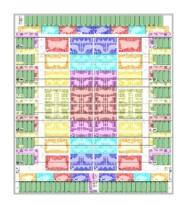
Polaris

- ALCF's latest computational resource
 - #12 on the Top 500, 24 PF
- https://www.alcf.anl.gov/polaris


- Available in the coming months
 - Currently limited to ALCF staff as part of standup
 - Targeting 2H2022 for wider general access

Polaris Single Node Configuration

# of AMD EPYC 7532 CPUs	1
# of NVIDIA A100 GPUs	4
Total HBM2 Memory	160 GB
HBM2 Memory BW per GPU	1.6 TB/s
Total DDR4 Memory	512 GB
DDR4 Memory BW	204.8 GB/s
# OF NVMe SSDs	2
Total NVMe SSD Capacity	3.2 TB
# of Cassini NICs	2
Total Injection BW (w/ Cassini)	50 GB/s
PCIe Gen4 BW	64 GB/s
NVLink BW	600 GB/s
Total GPU DP Tensor Core Flops	78 TF



Slingshot Interconnect

Rosetta Switch

- Multiple QoS levels
- Aggressive adaptive routing
- Advanced congestion control
- Very low average and tail latency
- High performance multicast and reduction

64 ports x 200 Gbps

SS-10 (100Gb)

Injection: ~14 TB/s Bisection: ~24 TB/s

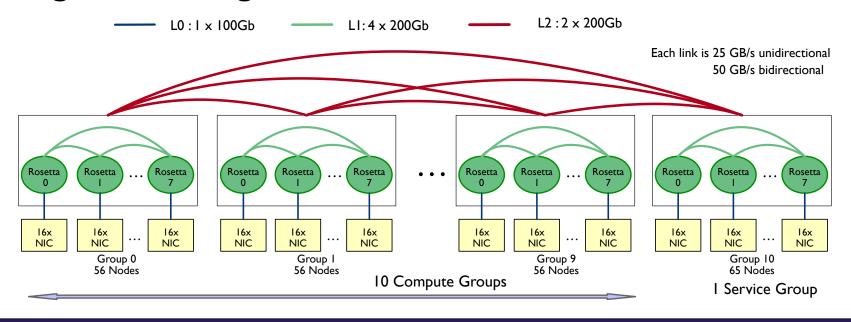
SS-11 (200Gb)

Injection: ~28 TB/s Bisection: ~24 TB/s

Mellanox ConnectX NIC

Slingshot 10

- HPE Cray MPI stack
- Ethernet functionality
- RDMA offload


Cassini NIC

Slingshot 11

- MPI hardware tag matching
- MPI progress engine
- One-sided operations
- Collectives
- 2X injection bandwidth

Slingshot Configuration

- 11 Total dragonfly groups, 10 compute groups and 1 non-compute group
- 2 links/arc between each group
- 4 links/arc within each group (between switches of a group)
- 1 link from each NIC (100Gb with SS10, 200Gb when upgraded to SS11)

Polaris Programming Environment

- HPE Cray PE
- NVIDIA HPC SDK
- Programming models supported:
 - OpenMP
 - SYCL/Data Parallel C++ provided via
 - CodePlay computecpp compiler with Nvidia support
 - LLVM via Intel DPC++ branch which supports offload to Nvidia GPUs as well as Intel GPUs
 - Kokkos
 - RAJA
 - HIP
 - CUDA
 - OpenACC

Polaris as a Bridge to Aurora

Component	Polaris	Aurora
System Software	HPCM	HPCM
Programming Models	OpenMP, DPC++, Kokkos, RAJA, HIP, CUDA, OpenACC	OpenMP, DPC++, Kokkos, RAJA, HIP
Tools	PAT, gdb, ATP, NVIDIA Nsight, cuda-gdb	PAT, gdb, ATP, Intel VTune
MPI	HPE Cray MPI, MPICH	HPE Cray MPI, MPICH, Intel MPI
Multi-GPU	1 CPU : 4 GPU	2 CPU : 6 GPU
High-Speed Network (HSN)	HPE Slingshot	HPE Slingshot
Data and Learning	DL frameworks, Cray Al stack, Python, Numba, Spark, Containers, RAPIDS	DL frameworks, Cray AI stack, Python, Numba, Spark, Containers, oneDAL
Math Libraries	cu* from CUDA	oneAPI

Aurora

Leadership Computing Facility Exascale Supercomputer

Peak Performance ≥ 2 Exaflops DP

Intel GPU
Ponte Vecchio (PVC)

Intel Xeon Processor

Sapphire Rapids with
High Bandwidth Memory

Platform **HPE Cray-Ex**

Compute Node

2 Xeon SPR+HBM processors 6 Ponte Vecchio GPUs Node Unified Memory Architecture 8 fabric endpoints

GPU Architecture

Intel XeHPC architecture High Bandwidth Memory Stacks

Node Performance

>130 TF

System Size

>9,000 nodes

Aggregate System Memory

>10 PB aggregate System Memory

System Interconnect

HPE Slingshot 11
Dragonfly topology with adaptive routing

Network Switch

25.6 Tb/s per switch (64 200 Gb/s ports) Links with 25 GB/s per direction

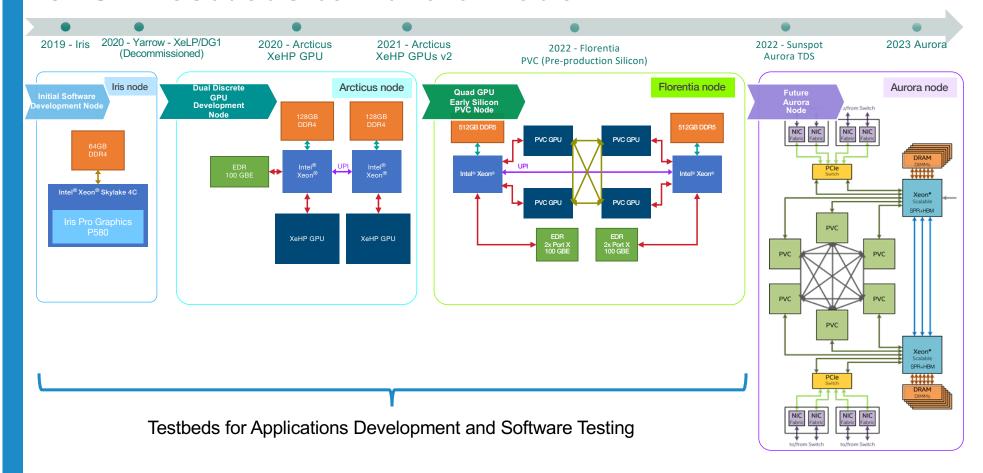
High-Performance Storage

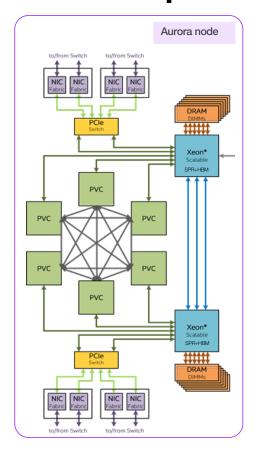
220 PB ≧25 TB/s DAOS bandwidth

Software Environment

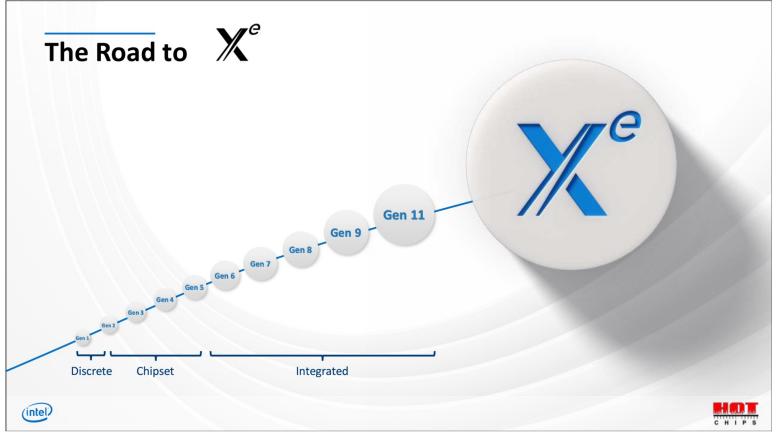
- C/C++
- Fortran
- SYCL/DPC++
- OpenMP offload
- Kokkos
- RAJA
- · Intel Performance Tools

Aurora Cabinets Installed at Argonne

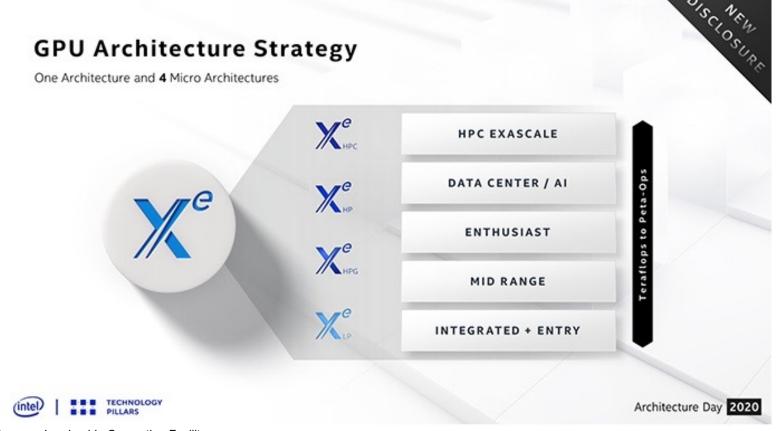




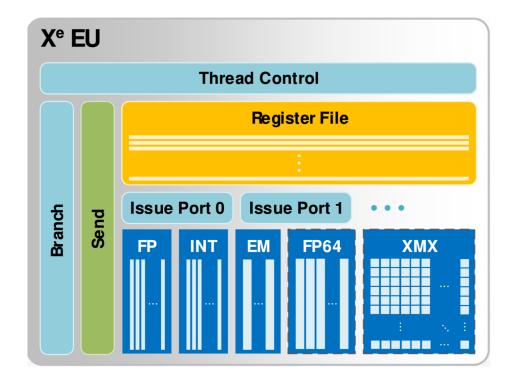
JLSE Testbeds to Aurora Node


Aurora Compute Node

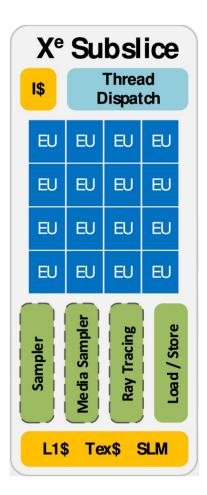
- 6 X^e Architecture based GPUs (Ponte Vecchio)
 - · All to all connection
- 2 Intel Xeon (Sapphire Rapids) processors
- Unified Memory Architecture across CPUs and GPUs
- 8 Slingshot Fabric endpoints



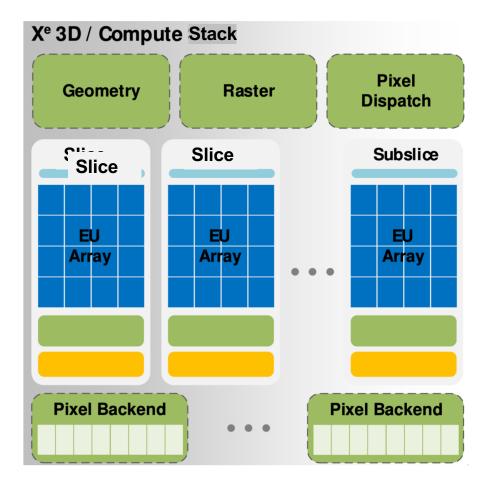
The Evolution of Intel GPUs


The Evolution of Intel GPUs

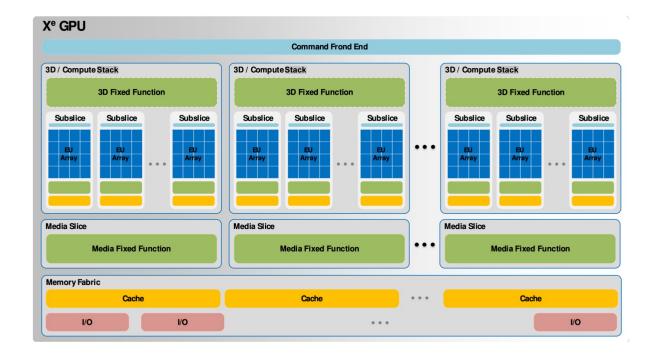
XE Execution Unit


- ☐ The EU executes instructions
 - Register file
 - Multiple issue ports
 - Vector pipelines
 - Float Point
 - Integer
 - Extended Math
 - ☐ FP 64 (optional)
 - ☐ Matrix Extension (XMX) (optional)
 - Thread control
 - Branch
 - Send (memory)

XE Slice

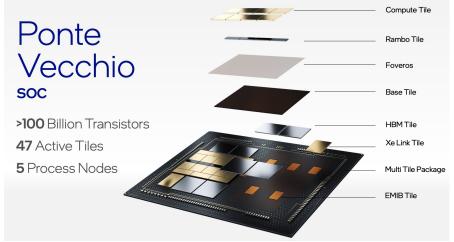

- A Slice contains:
 - ☐ 16 EUs
 - Thread dispatch
 - Instruction cache
 - L1, texture cache, and shared local memory
 - Load/Store
 - ☐ Fixed Function (optional)
 - 3D Sampler
 - Media Sampler
 - Ray Tracing

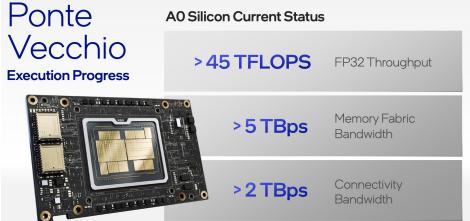
XE Stack


- A Stack contains
 - Variable number of slices
 - □ 3D Fixed Function (optional)
 - Geometry
 - Raster

High Level Xe Architecture

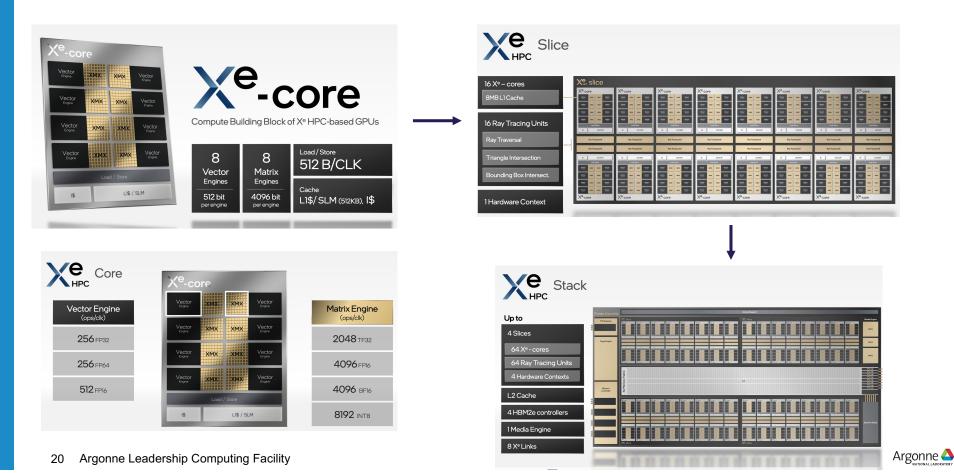
- □ X^e GPU is composed of
 - □ 3D/Compute Stacks
 - Media Stack
 - Memory Fabric / Cache

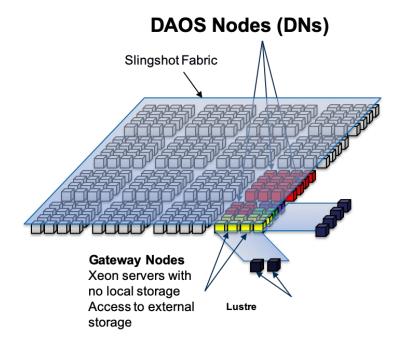




Intel Ponte Vecchio (XeHPC) GPU

Intel provided an introduction to the Ponte Vecchio GPU at their 2021 Intel Architecture Day event


• https://www.intel.com/content/www/us/en/newsroom/resources/press-kit-architecture-day-2021.html



Intel Ponte Vecchio Architectural Components

Distributed Asynchronous Object Store (DAOS)

- ☐ Primary storage system for Aurora
- Offers high performance in bandwidth and IO operations
 - 230 PB capacity
 - □ ≥ 25 TB/s
- □ Provides a flexible storage API that enables new I/O paradigms
- □ Provides compatibility with existing I/O models such as POSIX, MPI-IO and HDF5
- Open source storage solution

Pre-exascale and Exascale US Landscape

System	Delivery	CPU + Accelerator Vendor
Summit	2018	IBM + NVIDIA
Sierra	2018	IBM + NVIDIA
Perlmutter	2021	AMD + NVIDIA
Frontier	2021	AMD + AMD
Polaris	2021	AMD + NVIDIA
Aurora	2022	Intel + Intel
El Capitan	2023	AMD + AMD

- Heterogenous Computing (CPU + Accelerator)
- Varying vendors

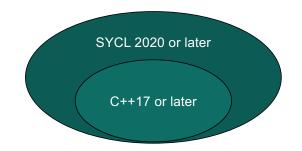
oneAPI

- Industry specification from Intel (https://www.oneapi.com/spec/)
 - Language and libraries to target programming across diverse architectures (DPC++, APIs, low level interface)
- Intel oneAPI products and toolkits (https://software.intel.com/ONEAPI)
 - Languages
 - Fortran (w/ OpenMP 5+)
 - C/C++ (w/ OpenMP 5+)
 - DPC++
 - Python
 - Libraries
 - oneAPI MKL (oneMKL)
 - oneAPI Deep Neural Network Library (oneDNN)
 - oneAPI Data Analytics Library (oneDAL)
 - MPI
 - Tools
 - Intel Advisor
 - Intel VTune
 - Intel Inspector

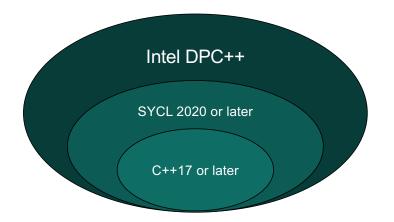
https://software.intel.com/oneapi

Available Aurora Programming Models

- ☐ Aurora applications may use:
 - □ DPC++/SYCL
 - OpenMP
 - Kokkos
 - Raja
 - OpenCL
- Experimental
 - ☐ HIP
- □ Not available on Aurora:
 - CUDA
 - OpenACC



DPC++ (Data Parallel C++) and SYCL


- **□** SYCL
 - □ Standard developed by Khronos and announced in 2014
 - ☐ The latest SYCL specification (SYCL 2020) was release in 2021
 - □ SYCL is a C++ based abstraction layer (standard C++17)
 - ☐ Builds on OpenCL **concepts** (but single-source)
 - □ SYCL is designed to be as close to standard C++ as possible

DPC++ (Data Parallel C++) and SYCL

- **□** SYCL
 - □ Standard developed by Khronos and announced in 2014
 - ☐ The latest SYCL specification (SYCL 2020) was release in 2021
 - □ SYCL is a C++ based abstraction layer (standard C++17)
 - ☐ Builds on OpenCL **concepts** (but single-source)
 - □ SYCL is designed to be as close to standard C++ as possible
- □ DPC++
 - □ Part of Intel oneAPI specification and Intel's implementation of SYCL
 - ☐ Intel extension of SYCL to support new innovative features
 - Open source and available on github
 - ☐ Contains a Plugin Interface (PI) to allow DPC++ to run on multiple devices

OpenMP

- OpenMP is a widely supported and utilized programming model
- OpenMP 5 constructs will provide directives based programming model for Intel GPUs
- Available for C, C++, and Fortran and optimized for Aurora
- Current OpenMP 5.1 spec supports offloading to an accelerator/GPU
 - Support started with OpenMP 4
- OpenMP with offload support offers a potential path to developing performance portable applications
- Multiple compilers and vendors providing OpenMP implementations
- Community has a consensus what is the "most common" subset of OpenMP features to be supported on devices.
 - OpenMP features inappropriate to GPUs are often not implemented

Intel Fortran for Aurora


- ☐ Fortran 2008
- ☐ OpenMP 5
- New compiler—LLVM backend
 - ☐ Strong Intel history of optimizing Fortran compilers
- ☐ Beta available today in OneAPI toolkits

Intel VTune and Advisor

- Vtune Profiler
 - Widely used performance analysis tool
 - Supports analysis on Intel GPUs
- Advisor
 - Provides roofline analysis
 - Offload analysis will identify components for profitable offload
 - ☐ Measure performance and behavior of original code
 - Model specific accelerator performance to determine offload opportunities
 - Considers overhead from data transfer and kernel launch

Intel MKL – Math Kernel Library

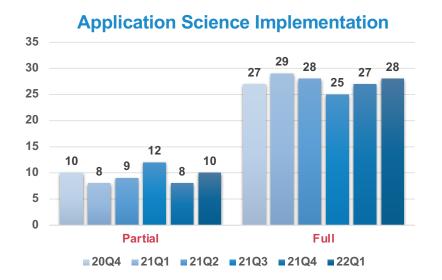
- ☐ Highly tuned algorithms
 - ☐ FFT
 - ☐ Linear algebra (BLAS, LAPACK)
 - Sparse linear algebra
 - Statistical functions
 - Vector math
 - Random number generators
- ☐ Optimized for every Intel platform
- □ oneAPI MKL (oneMKL)
 - □ https://software.intel.com/en-us/oneapi/mkl

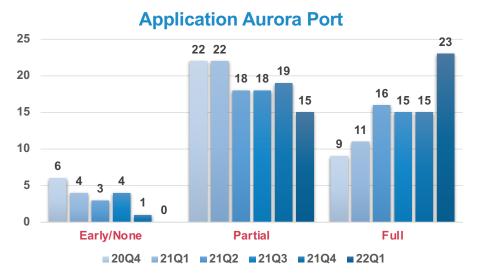
Latest oneAPI toolkits include DPC++ support and C/Fortran OpenMP offload

Al and Analytics

- ☐ Libraries to support AI and Analytics
 - OneAPI Deep Neural Network Library (oneDNN)
 - ☐ High Performance Primitives to accelerate deep learning frameworks
 - ☐ Powers Tensorflow, PyTorch, MXNet, Intel Caffe, and more
 - oneAPI Data Analytics Library (oneDAL)
 - ☐ Classical Machine Learning Algorithms
 - ☐ Easy to use one-line daal4py Python interfaces
 - Powers Scikit-Learn
 - Apache Spark MLlib

Aurora Applications Overview


- ALCF and Intel are working with over 40 projects to ready codes for Aurora:
 - —Argonne Early Science Program (ESP) projects contains a mix of simulations, learning and data projects
 - —DOE Exascale Computing Project (ECP) contains applications (AD) and software (ST) projects
- Over 50 applications and software packages are being prepared for Aurora:
- Involves effort from over 60 Argonne and Intel people and numerous outside teams
- Significant progress on readying applications for Aurora has occurred
 - —ECP and ESP teams have been actively porting and testing code and reporting issues
 - —Argonne and Intel have held quarterly application status reviews to identify top issues
 - —Monthly priority bug meeting between ANL and Intel to follow-up and track issue resolution
 - -Receiving regular SDK updates from Intel
 - Test framework on JLSE allows issue reproducers and applications tests to be run before software updates and nightly to identify changes



Aurora Applications Development

Steps in application preparation

- · Implementation of science and algorithms
- · Porting to Aurora programming models
- Testing with Aurora SDK on Aurora testbeds
- Tuning for performance on Aurora testbeds
- · Scaling across the Aurora system

Arcticus Applications Testing and Tuning Status

Application	Status	
XGC*+	Ready	
NWChemEx*+	Ready	
SW4 ⁺	Ready	
HACC*+	Ready	
NAMD*	Improving Performance	
PHASTA*	Improving Performance	
GAMESS+	Improving Performance	
Grid*+	Improving Performance	
FusionDL*	Improving Performance	
AMRWind+	Improving Performance	
NekRS ⁺	Improving Performance	
Madgraph*	Improving Performance	
CANDLE/UNO*+	Improving Performance	
QMCPack*+	Improving Performance	
QUDA*+	Improving Performance	
FastCaloSim*	Running	
NYX ⁺	Running	
DarkSkyMining*	Running	
DCMesh*	Running	

Applications	Status
FloodFillNetwork*	Running
Chroma*+	Running
BerkelyGW*	Components Running
E3SM-MMF+	Components Running
MFIX-Exa+	Components Running
spiniFEL+	Components Running
OpenMC+	Components Running
LAMMPS+	Components Running
GENE+	Components Running
Uintah*	Components Running
Thornado ⁺	Components Running
Data Driven CFD*	Components Running
E3SM (YAKL)+	Components Running
cctbx+	Components Running
Flow Based Generative Model*	Gated
Nalu-Wind+	Gated
GEM ⁺	Not Tested
MatML Workflow*	Not Tested
Multi-grid Parameter Optimization*	Not Tested


^{*} ESP Code

⁺ ECP Code

Description	
Ready for next testbed	
Working to improve performance	
Full application running	
Components running	
Waiting on needed functionality	
Not tested yet on system	

34 Argonne Leadership Computing Facility

