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XGC introduction
• Tokamak plasma physics code specializing in edge physics and realistic geometry

• Gyrokinetic (i.e. 6D à 5D via analytic reduction using gyro-averaging)

• Particle-in-cell with an unstructured 2D grid and structured toroidal dimension

• Domain decomposition: toroidally sliced, then each MPI rank handles a subset of 
the grid

Charge scatter

Field solve

Electron push (x6-60)
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Whole Device Model (WDMApp)

• ECP-WDM project

• Couples XGC with a core code (GENE or GEM) for ”whole device modeling”

• The vast majority (>90%) of time spent is spent in XGC, so its optimization is most critical
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XGC engineering challenges
• A wide array of physics features and modes must be supported, e.g.:

– Delta-f (perturbation from Maxwellian) and full-f
– Electrostatic (magnetic field perturbations due to plasma ignored) and electromagnetic
– Axisymmetric (“XGCa”)
– Impurities
– Neutral particles with atomic cross-sections
– Coupling (GENE, GEM, XGC, in-situ analysis)

• These different modes of operation can drastically alter landscape of performance bottlenecks

• Physics in constant state of development
– Some changes are modular additional features

• e.g. new sources
– But others are (sometimes fundamental) structural modifications, e.g.:

• Stellarator
• 6D
• Split-weight scheme

• Multirate timestepping
• Time telescoping
• Implicit timestepping
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Target architectures

Machine Cori KNL Summit Perlmutter Frontier Aurora

Testbed Crusher Sunspot

Vendor Intel Nvidia Nvidia AMD Intel

“Native” language Cuda Cuda HIP SYCL

GPU resources per rank 1 V100 1 A100 ½ MI250X NDA

Host memory per rank 96 GB 85.3 GB 64 GB 64 GB NDA

Device memory per rank 16 GB 40 GB 64 GB NDA

Trade-offs – memory, computation, communication
• “Distributed calculation + gather” vs “Full calculation on each process” (comms vs computation)

• (Incidentally, makes FLOPS comparisons even less meaningful)
• Pre-computation vs on-the-fly recalculation (memory vs computation)

Some data is better off stored on device memory if available, but otherwise must be transferred 
frequently between host and device
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Particle memory management: Reside in host or device memory?

All particles reside permanently on GPU
– No time spent on communication
– Number of particles per species limited by 

GPU memory

Particles sent to device for each kernel
– More particles possible – only one 

species needs to fit on the GPU at a time
– Extra communication time

Device
Host

Kernel (   )

Device
Host

Kernel (   )

Kernel (   ) Kernel (   )

• Different optimal memory management for particles on different architectures
– Depends on available memory per GPU and per MPI rank, and communication rate
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Exascale Preparation: Kokkos and C++
Kokkos: a portability abstraction layer that maps to OpenMP, Cuda, HIP, and SYCL

Pre 2019
Fortran code with 3 versions of 
dominant kernels:
• OpenACC collisions and
Cuda Fortran electron push for GPUs
• Vectorized CPU version, 
• Simple reference CPU version

2019
Fortran code using 
wrappers and macros to 
offload with Kokkos
• Tedious and inflexible
• Unclear for AMD/Intel GPUs

Present day
C++ code with non-critical 
components left in Fortran

XGC Timeline

XGC

Kokkos

OpenMP Cuda         HIP        SYCL
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XGC engineering approaches
• Portability with Kokkos and Cabana (ECP-CoPA particle library)

• Major focus on encapsulation/modularity

• Templating
– e.g., electron push and ion push are quite different (electrons subcycle and are drift kinetic, ions are 

gyrokinetic) but use the same code
– Easier than before to experiment/swap out options

• Stand-alone kernels
– Most major code components can be run independently
– Use the same code base (no copies!):

• Never outdated
• Don’t require extra maintenance
• Improvements immediately benefit the full code

• Testing/CI
– Unit tests, kernel regression tests, and run test on every pull request
– Automated physics testing still in progress
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Key Frontier result: ECP-WDM KPP-FOM achieved

• Performance requirement: Using a DOE exascale platform, achieve 50X performance 
improvement over the original simulations running XGC alone on Titan

• Measured: 301X enhancement on Frontier with XGC-GEM coupled code
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20
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Coupling Data Between Codes on Frontier
Experimented with several I/O code-coupling strategies with EFFIS

• File-based:
– Used in our FOM runs for simplicity

• Memory-based: MPI, RDMA, or TCP
– MPI:

• MPI_Open_port did not work (needed in MPI-based coupling orchestration)
• MPI_Init_thread was unstable (especially > 4K node count), and sometimes errors 

mentioning MPI_Init_thread were triggered when setting --threads-per-core=2 for the job

– RDMA:
• Libfabric for RDMA with ADIOS2 did not work

– TCP:
• Successful

Implications for Aurora

• Maintaining multiple coupling methods will be 
helpful for getting up-and-running fast
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Transient system issues encountered

• File system issues
• Network/MPI issues
• Node failures

Implications for Aurora

• Expect intermittent failures beyond ones control
• Lots of re-running of identical simulation
• Optimize simulation initialization
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XGC electrostatic benchmark on Frontier

• Performance enhancement from initial 
Summit to initial Frontier: 8.5x
– Initial to current Summit: 2.2x
– Current Summit to Frontier: another 3.9x

• vs 9x theoretical peak FLOPS

• GPU-aware MPI drastically improves 
performance
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Why is GPU-aware MPI so much better on Frontier?

1. Allocate host memory
2. Send data from device to host

NICDeviceHost

NICDeviceHost

• NICs are connected directly via GPUs

• CPU-only MPI requires extra steps
3. Do MPI comms (via GPUs)
(And reverse for received data)

Node

Node

to
network

to
network

1

2

3

(No extra allocations/copies required)

Implications for Aurora

• GPU-aware MPI will be worth using (but maybe not 
as dramatically)
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Strong Scaling

Same simulation size, different amount of resources
• Fewer compute nodes à less communication à more 

efficient resource usage
• Perfect strong scaling: no efficiency gains from using fewer 

compute nodes
– For XGC, improvement would probably require 

overlapping communication and computation

January 2023
Implications for Aurora

• Should pack simulation into fewest nodes possible 
if trying to optimize efficiency rather than overall 
wall-clock time
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Did Frontier behavior match extrapolations from Crusher?
(Likewise, what can we infer from Sunspot?)

• Very similar performance at same scale (~100 compute nodes)
– GPU-aware MPI correctness bug identified on Crusher, workaround found which helped on Frontier

• Unexpected challenges at large scale (>2,000 nodes)
– Theoretical GPU memory: 64 GB per MPI process
– Actual available memory still unclear:

• Sufficient memory must be available for GPU-aware MPI operations
• Encountered a bug/apparent memory leak: memory used by MPI(?) is not relinquished

– This prevented us from packing larger simulation size into fewer ranks for additional efficiency

Implications for Aurora

• Safer to leave a generous memory margin for initial simulations
• Maintain less performant but less demanding options

• CPU-only MPI
• CPU-resident particles
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Weak scaling on Frontier
New challenges due to high toroidal resolution

• Particle push
– Typically scales perfectly
– Higher toroidal resolution may result in worse 

memory access patterns; toroidal sorting 
might be needed

• “Plane gather”
– Domain decomposition in toroidal "planes"
– 2x planes = 2x the time
– Starting to impact time-to-solution
– New algorithm introduced: sends less data, 

but more (duplicate) computations done 
locally.

Implications for Aurora

• New trade-offs may become worthwhile at scale
• Stand-alone component kernels should be designed 

to imitate large scale
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Plane gather: computation vs communication trade-off

• “Plane gather” gathers the electric field E from all planes, since the full domain’s field is currently 
needed on every MPI process

• Original algorithm
1. Each plane computes its local E from Φ
2. Sends resulting E to all other planes

• New algorithm
1. Each plane sends its local Φ to all other planes
2. Computes E from Φ for all planes

• New algorithm is 2.7x faster on 4,096 Frontier nodes
– 6x less communication; Nplanesx more computation
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In progress: Intra-node domain decomposition of EM fields
• Electrons need full domain; network-wide particle migration between each electron subcycle too expensive

• Frontier/Aurora science plans involve higher resolution à more field data
– Currently the limiting factor in simulation resolution

• Experimental solution: Intra-node domain decomposition
– Intra-node particle migration may be cheap enough to be worth it
– But there are some subtleties involved because of our gather/push algorithm
– Gets complicated quickly, e.g. local load balancing clashing with network-wide load balancing

NODE 
CPUs

E

EE

E
Intra-node

particle migrationà

GPU GPU

GPU GPU

GPU GPU

GPU GPU
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Sunspot status and comparison

• Performance comparable to Polaris and Frontier

• Recently investigating bug (nondeterministic memory 
corruption)
– Unclear if due to XGC changes, Sunspot changes, or 

combination

• Very slow link times
– ~10 minutes, makes debugging process difficult
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Summary

• For optimized exascale, XGC needed not just GPU 
offloading, but also algorithmic flexibility

• Looking forward to science on Aurora!

• Maintaining multiple coupling methods will be 
helpful for getting up-and-running fast

• Expect intermittent failures beyond ones control
• Lots of re-running of identical simulation
• Optimize simulation initialization

• GPU-aware MPI will be worth using (but maybe not 
as dramatically)

• Should pack simulation into fewest nodes possible 
if trying to optimize efficiency rather than overall 
wall-clock time

• Safer to leave a generous memory margin for initial 
simulations

• Maintain less performant, less demanding options
• CPU-only MPI
• CPU-resident particles

• New trade-offs may become worthwhile at scale
• Stand-alone component kernels should be designed 

to imitate large scale


