
Preparing XGC for Exascale Science on Aurora

A. Scheinberg1, T. Williams2, E. Suchyta3, K. Huck4, S. Ethier5, CS 
Chang5

May 24, 2023

1Jubilee Development
2Argonne National Laboratory
3Oak Ridge National Laboratory
4University of Oregon
5Princeton Plasma Physics Laboratory



2

XGC introduction
• Tokamak plasma physics code specializing in edge physics and realistic geometry

• Gyrokinetic (i.e. 6D à 5D via analytic reduction using gyro-averaging)

• Particle-in-cell with an unstructured 2D grid and structured toroidal dimension

• Domain decomposition: toroidally sliced, then each MPI rank handles a subset of 
the grid

Charge scatter

Field solve

Electron push (x6-60)
Ion push

Shift particles to domain

Collisions
Sources
Diagnostics

Tokamak cross-section

Rank 0

Rank 1

Etc.



3

Whole Device Model (WDMApp)

• ECP-WDM project

• Couples XGC with a core code (GENE or GEM) for ”whole device modeling”

• The vast majority (>90%) of time spent is spent in XGC, so its optimization is most critical



4

XGC engineering challenges
• A wide array of physics features and modes must be supported, e.g.:

– Delta-f (perturbation from Maxwellian) and full-f
– Electrostatic (magnetic field perturbations due to plasma ignored) and electromagnetic
– Axisymmetric (“XGCa”)
– Impurities
– Neutral particles with atomic cross-sections
– Coupling (GENE, GEM, XGC, in-situ analysis)

• These different modes of operation can drastically alter landscape of performance bottlenecks

• Physics in constant state of development
– Some changes are modular additional features

• e.g. new sources
– But others are (sometimes fundamental) structural modifications, e.g.:

• Stellarator
• 6D
• Split-weight scheme

• Multirate timestepping
• Time telescoping
• Implicit timestepping



5

Target architectures

Machine Cori KNL Summit Perlmutter Frontier Aurora

Testbed Crusher Sunspot

Vendor Intel Nvidia Nvidia AMD Intel

“Native” language Cuda Cuda HIP SYCL

GPU resources per rank 1 V100 1 A100 ½ MI250X NDA

Host memory per rank 96 GB 85.3 GB 64 GB 64 GB NDA

Device memory per rank 16 GB 40 GB 64 GB NDA

Trade-offs – memory, computation, communication
• “Distributed calculation + gather” vs “Full calculation on each process” (comms vs computation)

• (Incidentally, makes FLOPS comparisons even less meaningful)
• Pre-computation vs on-the-fly recalculation (memory vs computation)

Some data is better off stored on device memory if available, but otherwise must be transferred 
frequently between host and device



6

Particle memory management: Reside in host or device memory?

All particles reside permanently on GPU
– No time spent on communication
– Number of particles per species limited by 

GPU memory

Particles sent to device for each kernel
– More particles possible – only one 

species needs to fit on the GPU at a time
– Extra communication time

Device
Host

Kernel (   )

Device
Host

Kernel (   )

Kernel (   ) Kernel (   )

• Different optimal memory management for particles on different architectures
– Depends on available memory per GPU and per MPI rank, and communication rate



7

Exascale Preparation: Kokkos and C++
Kokkos: a portability abstraction layer that maps to OpenMP, Cuda, HIP, and SYCL

Pre 2019
Fortran code with 3 versions of 
dominant kernels:
• OpenACC collisions and
Cuda Fortran electron push for GPUs
• Vectorized CPU version, 
• Simple reference CPU version

2019
Fortran code using 
wrappers and macros to 
offload with Kokkos
• Tedious and inflexible
• Unclear for AMD/Intel GPUs

Present day
C++ code with non-critical 
components left in Fortran

XGC Timeline

XGC

Kokkos

OpenMP Cuda         HIP        SYCL



8

XGC engineering approaches
• Portability with Kokkos and Cabana (ECP-CoPA particle library)

• Major focus on encapsulation/modularity

• Templating
– e.g., electron push and ion push are quite different (electrons subcycle and are drift kinetic, ions are 

gyrokinetic) but use the same code
– Easier than before to experiment/swap out options

• Stand-alone kernels
– Most major code components can be run independently
– Use the same code base (no copies!):

• Never outdated
• Don’t require extra maintenance
• Improvements immediately benefit the full code

• Testing/CI
– Unit tests, kernel regression tests, and run test on every pull request
– Automated physics testing still in progress



9

Key Frontier result: ECP-WDM KPP-FOM achieved

• Performance requirement: Using a DOE exascale platform, achieve 50X performance 
improvement over the original simulations running XGC alone on Titan

• Measured: 301X enhancement on Frontier with XGC-GEM coupled code

301

200

20



10

Coupling Data Between Codes on Frontier
Experimented with several I/O code-coupling strategies with EFFIS

• File-based:
– Used in our FOM runs for simplicity

• Memory-based: MPI, RDMA, or TCP
– MPI:

• MPI_Open_port did not work (needed in MPI-based coupling orchestration)
• MPI_Init_thread was unstable (especially > 4K node count), and sometimes errors 

mentioning MPI_Init_thread were triggered when setting --threads-per-core=2 for the job

– RDMA:
• Libfabric for RDMA with ADIOS2 did not work

– TCP:
• Successful

Implications for Aurora

• Maintaining multiple coupling methods will be 
helpful for getting up-and-running fast



11

Transient system issues encountered

• File system issues
• Network/MPI issues
• Node failures

Implications for Aurora

• Expect intermittent failures beyond ones control
• Lots of re-running of identical simulation
• Optimize simulation initialization



12

XGC electrostatic benchmark on Frontier

• Performance enhancement from initial 
Summit to initial Frontier: 8.5x
– Initial to current Summit: 2.2x
– Current Summit to Frontier: another 3.9x

• vs 9x theoretical peak FLOPS

• GPU-aware MPI drastically improves 
performance



13

Why is GPU-aware MPI so much better on Frontier?

1. Allocate host memory
2. Send data from device to host

NICDeviceHost

NICDeviceHost

• NICs are connected directly via GPUs

• CPU-only MPI requires extra steps
3. Do MPI comms (via GPUs)
(And reverse for received data)

Node

Node

to
network

to
network

1

2

3

(No extra allocations/copies required)

Implications for Aurora

• GPU-aware MPI will be worth using (but maybe not 
as dramatically)



14

Strong Scaling

Same simulation size, different amount of resources
• Fewer compute nodes à less communication à more 

efficient resource usage
• Perfect strong scaling: no efficiency gains from using fewer 

compute nodes
– For XGC, improvement would probably require 

overlapping communication and computation

January 2023
Implications for Aurora

• Should pack simulation into fewest nodes possible 
if trying to optimize efficiency rather than overall 
wall-clock time



15

Did Frontier behavior match extrapolations from Crusher?
(Likewise, what can we infer from Sunspot?)

• Very similar performance at same scale (~100 compute nodes)
– GPU-aware MPI correctness bug identified on Crusher, workaround found which helped on Frontier

• Unexpected challenges at large scale (>2,000 nodes)
– Theoretical GPU memory: 64 GB per MPI process
– Actual available memory still unclear:

• Sufficient memory must be available for GPU-aware MPI operations
• Encountered a bug/apparent memory leak: memory used by MPI(?) is not relinquished

– This prevented us from packing larger simulation size into fewer ranks for additional efficiency

Implications for Aurora

• Safer to leave a generous memory margin for initial simulations
• Maintain less performant but less demanding options

• CPU-only MPI
• CPU-resident particles



16

Weak scaling on Frontier
New challenges due to high toroidal resolution

• Particle push
– Typically scales perfectly
– Higher toroidal resolution may result in worse 

memory access patterns; toroidal sorting 
might be needed

• “Plane gather”
– Domain decomposition in toroidal "planes"
– 2x planes = 2x the time
– Starting to impact time-to-solution
– New algorithm introduced: sends less data, 

but more (duplicate) computations done 
locally.

Implications for Aurora

• New trade-offs may become worthwhile at scale
• Stand-alone component kernels should be designed 

to imitate large scale



17

Plane gather: computation vs communication trade-off

• “Plane gather” gathers the electric field E from all planes, since the full domain’s field is currently 
needed on every MPI process

• Original algorithm
1. Each plane computes its local E from Φ
2. Sends resulting E to all other planes

• New algorithm
1. Each plane sends its local Φ to all other planes
2. Computes E from Φ for all planes

• New algorithm is 2.7x faster on 4,096 Frontier nodes
– 6x less communication; Nplanesx more computation



18

In progress: Intra-node domain decomposition of EM fields
• Electrons need full domain; network-wide particle migration between each electron subcycle too expensive

• Frontier/Aurora science plans involve higher resolution à more field data
– Currently the limiting factor in simulation resolution

• Experimental solution: Intra-node domain decomposition
– Intra-node particle migration may be cheap enough to be worth it
– But there are some subtleties involved because of our gather/push algorithm
– Gets complicated quickly, e.g. local load balancing clashing with network-wide load balancing

NODE 
CPUs

E

EE

E
Intra-node

particle migrationà

GPU GPU

GPU GPU

GPU GPU

GPU GPU



19

Sunspot status and comparison

• Performance comparable to Polaris and Frontier

• Recently investigating bug (nondeterministic memory 
corruption)
– Unclear if due to XGC changes, Sunspot changes, or 

combination

• Very slow link times
– ~10 minutes, makes debugging process difficult

4.30E+06

2.95E+06

3.84E+06

0.00E+00
5.00E+05
1.00E+06
1.50E+06
2.00E+06
2.50E+06
3.00E+06
3.50E+06
4.00E+06
4.50E+06
5.00E+06

Sunspot Polaris Frontier

Si
m

pl
eF

O
M

SimpleFOM, single-GPU measurement

0.00E+00

5.00E+06

1.00E+07

1.50E+07
2.00E+07

2.50E+07

1 3 6

Si
m

pl
eF

O
M

PVC GPUs

ideal Sunspot

0.00E+00

5.00E+06

1.00E+07

1.50E+07
2.00E+07

2.50E+07

1 2 4

Si
m

pl
eF

O
M

MI250X GPUs

ideal Frontier

0.00E+00

5.00E+06

1.00E+07

1.50E+07
2.00E+07

2.50E+07

1 2 4

Si
m

pl
eF

O
M

A100 GPUs

ideal Polaris

Single-Node Weak Scaling



20

Summary

• For optimized exascale, XGC needed not just GPU 
offloading, but also algorithmic flexibility

• Looking forward to science on Aurora!

• Maintaining multiple coupling methods will be 
helpful for getting up-and-running fast

• Expect intermittent failures beyond ones control
• Lots of re-running of identical simulation
• Optimize simulation initialization

• GPU-aware MPI will be worth using (but maybe not 
as dramatically)

• Should pack simulation into fewest nodes possible 
if trying to optimize efficiency rather than overall 
wall-clock time

• Safer to leave a generous memory margin for initial 
simulations

• Maintain less performant, less demanding options
• CPU-only MPI
• CPU-resident particles

• New trade-offs may become worthwhile at scale
• Stand-alone component kernels should be designed 

to imitate large scale


