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XGC introduction

Tokamak plasma physics code specializing in edge physics and realistic geometry

Gyrokinetic (i.e. 6D = 5D via analytic reduction using gyro-averaging)

Particle-in-cell with an unstructured 2D grid and structured toroidal dimension

Domain decomposition: toroidally sliced, then each MPI rank handles a subset of
the grid
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Whole Device Model (WDMApp)

« ECP-WDM project
* Couples XGC with a core code (GENE or GEM) for "whole device modeling”

» The vast majority (>90%) of time spent is spent in XGC, so its optimization is most critical
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XGC engineering challenges

» A wide array of physics features and modes must be supported, e.g.:
— Delta-f (perturbation from Maxwellian) and full-f
— Electrostatic (magnetic field perturbations due to plasma ignored) and electromagnetic
— Axisymmetric (“XGCa”)
— Impurities
— Neutral particles with atomic cross-sections
— Coupling (GENE, GEM, XGC, in-situ analysis)

» These different modes of operation can drastically alter landscape of performance bottlenecks
» Physics in constant state of development
— Some changes are modular additional features

* €.¢g. hew sources
— But others are (sometimes fundamental) structural modifications, e.g.:

» Stellarator » Multirate timestepping
« 6D « Time telescoping
» Split-weight scheme » Implicit timestepping
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Target architectures

Machine Cori KNL Summit Perlmutter Frontier Aurora

Testbed Crusher Sunspot

Vendor Intel Nvidia Nvidia AMD Intel

“Native” language Cuda Cuda HIP SYCL

GPU resources per rank 1 V100 1 A100 Y2 MI250X [
Host memory per rank 96 GB 85.3 GB 64 GB 64 GB [
Device memory per rank 16 GB 40 GB 64 GB e

Trade-offs — memory, computation, communication

« “Distributed calculation + gather” vs “Full calculation on each process” (comms vs computation)
* (Incidentally, makes FLOPS comparisons even less meaningful)

* Pre-computation vs on-the-fly recalculation (memory vs computation)

Some data is better off stored on device memory if available, but otherwise must be transferred
frequently between host and device
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Particle memory management: Reside in host or device memory?

 Different optimal memory management for particles on different architectures

— Depends on available memory per GPU and per MPI rank, and communication rate

Particles sent to device for each kernel

— More particles possible — only one
species needs to fit on the GPU at a time

— Extra communication time
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Exascale Preparation: Kokkos and C++

Kokkos: a portability abstraction layer that maps to OpenMP, Cuda, HIP, and SYCL

XGC
Kokkos
OpenMP Cuda SYCL
XGC Timeline
Pre 2019 2019 Present day
Fortran code with 3 versions of Fortran code using C++ code with non-critical
dominant kernels: wrappers and macros to components left in Fortran
« OpenACC collisions and offload with Kokkos
Cuda Fortran electron push for GPUs « Tedious and inflexible
« Vectorized CPU version, « Unclear for AMD/Intel GPUs

» Simple reference CPU version




XGC engineering approaches

» Portability with Kokkos and Cabana (ECP-CoPA patrticle library)
» Major focus on encapsulation/modularity

« Templating

— e.g., electron push and ion push are quite different (electrons subcycle and are drift kinetic, ions are
gyrokinetic) but use the same code

— Easier than before to experiment/swap out options

» Stand-alone kernels
— Most major code components can be run independently
— Use the same code base (no copies!):
* Never outdated
» Don’t require extra maintenance

» Improvements immediately benefit the full code

» Testing/Cl
— Unit tests, kernel regression tests, and run test on every pull request

— Automated physics testing still in progress

o \
\ EXASCALE
) COMPUTING
\ PROJECT




Key Frontier result: ECP-WDM KPP-FOM achieved

« Performance requirement: Using a DOE exascale platform, achieve 50X performance
improvement over the original simulations running XGC alone on Titan

e Measured: 301X enhancement on Frontier with XGC-GEM coupled code

ITER Grid, Electromagnetic Physics
Core: GEM=12 nodes

Edge: XGC=2" nodes
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Coupling Data Between Codes on Frontier

Experimented with several |/O code-coupling strategies with EFFIS

 File-based:
— Used in our FOM runs for simplicity

 Memory-based: MPIl, RDMA, or TCP

- MPI:
« MPI Open port did not work (needed in MPI-based coupling orchestration)

« MPI Init thread was unstable (especially > 4K node count), and sometimes errors
mentioning MPI Init thread were triggered when setting --threads-per-core=2 for the job

- RDMA:;
 Libfabric for RDMA with ADIOS2 did not work

- TCP:
e Successful

Implications for Aurora

« Maintaining multiple coupling methods will be
helpful for getting up-and-running fast
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Transient system issues encountered

« File system issues
« Network/MPI issues
« Node failures

( Implications for Aurora N

» Expect intermittent failures beyond ones control
* Lots of re-running of identical simulation
\_° Optimize simulation initialization )




XGC electrostatic benchmark on Frontier

 Performance enhancement from initial
Summit to initial Frontier: 8.5x

— Initial to current Summit; 2.2x

— Current Summit to Frontier: another 3.9x
 vs 9x theoretical peak FLOPS

 GPU-aware MPI drastically improves
performance
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Why is GPU-aware MPI| so much better on Frontier?

 NICs are connected directly via GPUs Node  — @ —__

Node ] r [@ Host } [ Device J— NIC T()}

[ Host Device J— NIC |—) W network
J L to
\_/ network

o CPU-only MPI requires extra steps

1. Allocate host memo 3. Do MPI comms (via GPUs
(No extra allocations/copies required) i ( )

2. Send data from device to host (And reverse for received data)

Implications for Aurora

« GPU-aware MPI will be worth using (but maybe not
as dramatically)




Strong Scaling

Same simulation size, different amount of resources

» Fewer compute nodes - less communication - more

efficient resource usage

» Perfect strong scaling: no efficiency gains from using fewer

compute nodes

— For XGC, improvement would probably require
overlapping communication and computation

Implications for Aurora

» Should pack simulation into fewest nodes possible
if trying to optimize efficiency rather than overall
wall-clock time
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Strong Scaling of EM D3D simulation

2.7x Summit

2.0x Summit

®—® Sunspot (12 ranks/node)
®—® Crusher (8 ranks/node)
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Simulation size: il
January 2023 11.5B particles (electrons + ions
864k vertices (4 planes x 216k)
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Did Frontier behavior match extrapolations from Crusher?

(Likewise, what can we infer from Sunspot?)

« Very similar performance at same scale (~100 compute nodes)
- GPU-aware MPI correctness bug identified on Crusher, workaround found which helped on Frontier
» Unexpected challenges at large scale (>2,000 nodes)
— Theoretical GPU memory: 64 GB per MPI process
— Actual available memory still unclear:
 Sufficient memory must be available for GPU-aware MPI operations
* Encountered a bug/apparent memory leak: memory used by MPI(?) is not relinquished
— This prevented us from packing larger simulation size into fewer ranks for additional efficiency

(Implications for Aurora )

« Safer to leave a generous memory margin for initial simulations
« Maintain less performant but less demanding options
« CPU-only MPI
\_ * CPU-resident particles )
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Weak scaling on Frontier

New challenges due to high toroidal resolution

+ Particle push XGC Weak Scaling - Electrostatic ITER
128
— Typically scales perfectly T —o
: . : . 64
— Higher toroidal resolution may result in worse ~ 1007 # P'%“}o'
memory access patterns; toroidal sorting
might be needed =
2 80 -
« “Plane gather” S
7))
— Domain decomposition in toroidal "planes” S 60 - 192 ﬁs
: 7 128 :
— 2x planes = 2x the time = » Frontier; Shift
~ Starting to impact time-to-solution v 4016 e Plane gather
— New algorithm introduced: sends less data, F F
but more (duplicate) computations done
locally. 20 A
Other grid ops
(" Implications for Aurora N 0 Collisions
* New trade-offs may become worthwhile at scale 1000 2000 3000# c4000 ; ;ogo SORI OO0 B008
- Stand-alone component kernels should be designed ompute fodes
\ _toimitate large scale )




Plane gather: computation vs communication trade-off

“‘Plane gather” gathers the electric field E from all planes, since the full domain’s field is currently
needed on every MPI process

Original algorithm
1. Each plane computes its local E from ®
2. Sends resulting E to all other planes

New algorithm
1. Each plane sends its local ® to all other planes
2. Computes E from O for all planes

New algorithm is 2.7x faster on 4,096 Frontier nodes
— 6x less communication; NpjanesX more computation




In progress: Intra-node domain decomposition of EM fields

» Electrons need full domain; network-wide particle migration between each electron subcycle too expensive

» Frontier/Aurora science plans involve higher resolution - more field data
— Currently the limiting factor in simulation resolution
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» Experimental solution: Intra-node domain decomposition
— Intra-node particle migration may be cheap enough to be worth it
— But there are some subtleties involved because of our gather/push algorithm
— Gets complicated quickly, e.g. local load balancing clashing with network-wide load balancing




Sunspot status and comparison
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 For optimized exascale, XGC needed not just GPU

offloading, but also algorithmic flexibility

» Looking forward to science on Auroral
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Summary

-

Maintaining multiple coupling methods will be
helpful for getting up-and-running fast

AL

Expect intermittent failures beyond ones control
Lots of re-running of identical simulation
Optimize simulation initialization

\
P

GPU-aware MPI will be worth using (but maybe not
as dramatically)

Nf

A

Should pack simulation into fewest nodes possible
if trying to optimize efficiency rather than overall
wall-clock time

Safer to leave a generous memory margin for initial
simulations
Maintain less performant, less demanding options
« CPU-only MPI
* CPU-resident particles

Z
)
New trade-offs may become worthwhile at scale

Stand-alone component kernels should be designed
to imitate large scale
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