Preparing XGC for Exascale Science on Aurora

A. Scheinberg’, T. Williams?, E. Suchyta3, K. Huck#, S. Ethier®, CS
Chang®

May 24, 2023

1Jubilee Development

. -
2Argonne National Laboratory \\
30ak Ridge National Laboratory E (l ) I:
4University of Oregon \
SPrinceton Plasma Physics Laboratory

EXASCALE COMPUTING PROJECT




XGC introduction

Tokamak plasma physics code specializing in edge physics and realistic geometry

Gyrokinetic (i.e. 6D = 5D via analytic reduction using gyro-averaging)

Particle-in-cell with an unstructured 2D grid and structured toroidal dimension

Domain decomposition: toroidally sliced, then each MPI rank handles a subset of
the grid

-

. Edge  Coupling
Charge scatter -/ (X6C)_~ interface

D i

Field solve

P s s

e
«

Electron push (x6-60)
lon push

¥
%
7

g
Ya
o
(#
4
v,
\J

3

D

g
)
",
o
N
N
N
4
‘\

Shift particles to domain

YATATATAY,

)

-

Collisions
Sources
Diagnostics




Whole Device Model (WDMApp)

« ECP-WDM project
* Couples XGC with a core code (GENE or GEM) for "whole device modeling”

» The vast majority (>90%) of time spent is spent in XGC, so its optimization is most critical

= —fEdge Coupling Wall

-/ (XGC) interface

Core plasma
(hot, collisionless)

’ Edge region
(large gradients)

Separatrix

E\(\i\\)r | X-point




XGC engineering challenges

» A wide array of physics features and modes must be supported, e.g.:
— Delta-f (perturbation from Maxwellian) and full-f
— Electrostatic (magnetic field perturbations due to plasma ignored) and electromagnetic
— Axisymmetric (“XGCa”)
— Impurities
— Neutral particles with atomic cross-sections
— Coupling (GENE, GEM, XGC, in-situ analysis)

» These different modes of operation can drastically alter landscape of performance bottlenecks
» Physics in constant state of development
— Some changes are modular additional features

* €.¢g. hew sources
— But others are (sometimes fundamental) structural modifications, e.g.:

» Stellarator » Multirate timestepping
« 6D « Time telescoping
» Split-weight scheme » Implicit timestepping

o \
\ EXASCALE
/ COMPUTING
\ PROJECT




Target architectures

Machine Cori KNL Summit Perlmutter Frontier Aurora

Testbed Crusher Sunspot

Vendor Intel Nvidia Nvidia AMD Intel

“Native” language Cuda Cuda HIP SYCL

GPU resources per rank 1 V100 1 A100 Y2 MI250X [
Host memory per rank 96 GB 85.3 GB 64 GB 64 GB [
Device memory per rank 16 GB 40 GB 64 GB e

Trade-offs — memory, computation, communication

« “Distributed calculation + gather” vs “Full calculation on each process” (comms vs computation)
* (Incidentally, makes FLOPS comparisons even less meaningful)

* Pre-computation vs on-the-fly recalculation (memory vs computation)

Some data is better off stored on device memory if available, but otherwise must be transferred
frequently between host and device

o \
\ EXASCALE
/ COMPUTING
\ PROJECT




Particle memory management: Reside in host or device memory?

 Different optimal memory management for particles on different architectures

— Depends on available memory per GPU and per MPI rank, and communication rate

Particles sent to device for each kernel

— More particles possible — only one
species needs to fit on the GPU at a time

— Extra communication time

_ / Kernel (@)
_Device .
Host

/ Kernel (©)

\ _________

All particles reside permanently on GPU
— No time spent on communication

— Number of particles per species limited by
GPU memory

Device ‘ @

Kernel (@)

Kernel (©)




Exascale Preparation: Kokkos and C++

Kokkos: a portability abstraction layer that maps to OpenMP, Cuda, HIP, and SYCL

XGC
Kokkos
OpenMP Cuda SYCL
XGC Timeline
Pre 2019 2019 Present day
Fortran code with 3 versions of Fortran code using C++ code with non-critical
dominant kernels: wrappers and macros to components left in Fortran
« OpenACC collisions and offload with Kokkos
Cuda Fortran electron push for GPUs « Tedious and inflexible
« Vectorized CPU version, « Unclear for AMD/Intel GPUs

» Simple reference CPU version




XGC engineering approaches

» Portability with Kokkos and Cabana (ECP-CoPA patrticle library)
» Major focus on encapsulation/modularity

« Templating

— e.g., electron push and ion push are quite different (electrons subcycle and are drift kinetic, ions are
gyrokinetic) but use the same code

— Easier than before to experiment/swap out options

» Stand-alone kernels
— Most major code components can be run independently
— Use the same code base (no copies!):
* Never outdated
» Don’t require extra maintenance

» Improvements immediately benefit the full code

» Testing/Cl
— Unit tests, kernel regression tests, and run test on every pull request

— Automated physics testing still in progress

o \
\ EXASCALE
) COMPUTING
\ PROJECT




Key Frontier result: ECP-WDM KPP-FOM achieved

« Performance requirement: Using a DOE exascale platform, achieve 50X performance
improvement over the original simulations running XGC alone on Titan

e Measured: 301X enhancement on Frontier with XGC-GEM coupled code

ITER Grid, Electromagnetic Physics
Core: GEM=12 nodes

Edge: XGC=2" nodes

301

200 -
—
o=
D]
=
O
Q
=
<
=
=
88
o
=~
FOM = N,, x N; x N,/10%°
N,,: number of grid vertices
Ng: number of electron steps in specified wall-clock time (60 seconds)
Np: number of particles per grid vertex in the edge code
20 - T T T | T | |
128 256 512 1024 2048 4096 6144

=\ Nodes
ECP =




Coupling Data Between Codes on Frontier

Experimented with several |/O code-coupling strategies with EFFIS

 File-based:
— Used in our FOM runs for simplicity

 Memory-based: MPIl, RDMA, or TCP

- MPI:
« MPI Open port did not work (needed in MPI-based coupling orchestration)

« MPI Init thread was unstable (especially > 4K node count), and sometimes errors
mentioning MPI Init thread were triggered when setting --threads-per-core=2 for the job

- RDMA:;
 Libfabric for RDMA with ADIOS2 did not work

- TCP:
e Successful

Implications for Aurora

« Maintaining multiple coupling methods will be
helpful for getting up-and-running fast

;~ \ EXASCALE
E\(C\)F’ EETRLNE




Transient system issues encountered

« File system issues
« Network/MPI issues
« Node failures

( Implications for Aurora N

» Expect intermittent failures beyond ones control
* Lots of re-running of identical simulation
\_° Optimize simulation initialization )




XGC electrostatic benchmark on Frontier

 Performance enhancement from initial
Summit to initial Frontier: 8.5x

— Initial to current Summit; 2.2x

— Current Summit to Frontier: another 3.9x
 vs 9x theoretical peak FLOPS

 GPU-aware MPI drastically improves
performance

o \
\ EXASCALE
) COMPUTING
\ PROJECT

XGC FoM: Nparticles X Nsteps/hr X 10712

W
o
1

N
(9)

N
o

XGC FoM - Electrostatic ITER

31.6

Frontier
(GPU-aware MPI)

14.8
/

Frontier
(CPU-only MPI)

8.20

Summit

¢ |Nnitial Summit FoM: 3.72

3000 4000 5000 6000 7000 8000
# Compute Nodes

0 1000 2000




Why is GPU-aware MPI| so much better on Frontier?

 NICs are connected directly via GPUs Node  — @ —__

Node ] r [@ Host } [ Device J— NIC T()}

[ Host Device J— NIC |—) W network
J L to
\_/ network

o CPU-only MPI requires extra steps

1. Allocate host memo 3. Do MPI comms (via GPUs
(No extra allocations/copies required) i ( )

2. Send data from device to host (And reverse for received data)

Implications for Aurora

« GPU-aware MPI will be worth using (but maybe not
as dramatically)




Strong Scaling

Same simulation size, different amount of resources

» Fewer compute nodes - less communication - more

efficient resource usage

» Perfect strong scaling: no efficiency gains from using fewer

compute nodes

— For XGC, improvement would probably require
overlapping communication and computation

Implications for Aurora

» Should pack simulation into fewest nodes possible
if trying to optimize efficiency rather than overall
wall-clock time

\

~N

J

—
’Q \
\ EXASCALE
) COMPUTING
\ PROJECT
S

Particles per GPU per ms

3000

2500

N
o
o
o

[y
(%
o
o

[
o
o
o

500

Strong Scaling of EM D3D simulation

2.7x Summit

2.0x Summit

®—® Sunspot (12 ranks/node)
®—® Crusher (8 ranks/node)

®—® Summit (6 ranks/node) |[]
- - Perfect strong scaling

—
(]
i
8 \. -
Simulation size: il
January 2023 11.5B particles (electrons + ions
864k vertices (4 planes x 216k)
64 128 256 512

Number of MPI ranks




Did Frontier behavior match extrapolations from Crusher?

(Likewise, what can we infer from Sunspot?)

« Very similar performance at same scale (~100 compute nodes)
- GPU-aware MPI correctness bug identified on Crusher, workaround found which helped on Frontier
» Unexpected challenges at large scale (>2,000 nodes)
— Theoretical GPU memory: 64 GB per MPI process
— Actual available memory still unclear:
 Sufficient memory must be available for GPU-aware MPI operations
* Encountered a bug/apparent memory leak: memory used by MPI(?) is not relinquished
— This prevented us from packing larger simulation size into fewer ranks for additional efficiency

(Implications for Aurora )

« Safer to leave a generous memory margin for initial simulations
« Maintain less performant but less demanding options
« CPU-only MPI
\_ * CPU-resident particles )

o \
\ EXASCALE
) COMPUTING
\ PROJECT




Weak scaling on Frontier

New challenges due to high toroidal resolution

+ Particle push XGC Weak Scaling - Electrostatic ITER
128
— Typically scales perfectly T —o
: . : . 64
— Higher toroidal resolution may result in worse ~ 1007 # P'%“}o'
memory access patterns; toroidal sorting
might be needed =
2 80 -
« “Plane gather” S
7))
— Domain decomposition in toroidal "planes” S 60 - 192 ﬁs
: 7 128 :
— 2x planes = 2x the time = » Frontier; Shift
~ Starting to impact time-to-solution v 4016 e Plane gather
— New algorithm introduced: sends less data, F F
but more (duplicate) computations done
locally. 20 A
Other grid ops
(" Implications for Aurora N 0 Collisions
* New trade-offs may become worthwhile at scale 1000 2000 3000# c4000 ; ;ogo SORI OO0 B008
- Stand-alone component kernels should be designed ompute fodes
\ _toimitate large scale )




Plane gather: computation vs communication trade-off

“‘Plane gather” gathers the electric field E from all planes, since the full domain’s field is currently
needed on every MPI process

Original algorithm
1. Each plane computes its local E from ®
2. Sends resulting E to all other planes

New algorithm
1. Each plane sends its local ® to all other planes
2. Computes E from O for all planes

New algorithm is 2.7x faster on 4,096 Frontier nodes
— 6x less communication; NpjanesX more computation




In progress: Intra-node domain decomposition of EM fields

» Electrons need full domain; network-wide particle migration between each electron subcycle too expensive

» Frontier/Aurora science plans involve higher resolution - more field data
— Currently the limiting factor in simulation resolution

GPU GPU GPU GPU
E E L] L\ C]
g4
NODE % Intra-node
CPUs particle migration
E E [_] "(r N
GPU GPU GPU GPU

» Experimental solution: Intra-node domain decomposition
— Intra-node particle migration may be cheap enough to be worth it
— But there are some subtleties involved because of our gather/push algorithm
— Gets complicated quickly, e.g. local load balancing clashing with network-wide load balancing




Sunspot status and comparison

. . SimpleFOM, single-GPU t
« Performance comparable to Polaris and Frontier 5(')';;:6 PEeTETE messtremen
. . . . . . 450E+06 4.30E+06
» Recently investigating bug (nondeterministic memory 4 00E+06 3.84E+06
corruptlon). s ;gg;gg 2.95E+06
— Unclear if due to XGC changes, Sunspot changes, or L 5 EOE+06
combination £ 2.00E+06
. _ “ 1.50E+06
* Very slow link times 1.00E+06
. . . 5.00E+05
- ~10 minutes, makes debugging process difficult 0.00E+00
Sunspot Polaris Frontier

Single-Node Weak Scaling

ideal m Sunspot ideal m Frontier ideal mPolaris
2.50E+07 2.50E+07 2.50E+07
s 2.00E+07 < 2.00E+07 < 2.00E+07
Q 1.50E+07 Q 1.50E+07 Q 1.50E+07
9 o 9
S 1.00E+07 S 1.00E+07 S 1.00E+07
® 5 00E+06 ¥ 5 00E+06 ® 5 00E+06
oooes00 I 0.00E+00 0.00E+00 NN
1 3 6 1 2 4 1 2 4
PVC GPUs MI250X GPUs A100 GPUs

—_—
\\ EXASCALE
) COMPUTING
\ PROJECT
e




 For optimized exascale, XGC needed not just GPU

offloading, but also algorithmic flexibility

» Looking forward to science on Auroral

o \
\ EXASCALE
) COMPUTING
\ PROJECT

Summary

-

Maintaining multiple coupling methods will be
helpful for getting up-and-running fast

AL

Expect intermittent failures beyond ones control
Lots of re-running of identical simulation
Optimize simulation initialization

\
P

GPU-aware MPI will be worth using (but maybe not
as dramatically)

Nf

A

Should pack simulation into fewest nodes possible
if trying to optimize efficiency rather than overall
wall-clock time

Safer to leave a generous memory margin for initial
simulations
Maintain less performant, less demanding options
« CPU-only MPI
* CPU-resident particles

Z
)
New trade-offs may become worthwhile at scale

Stand-alone component kernels should be designed
to imitate large scale

J




