Accelerate Python Loops with the Intel ©
Al Analytics Toolkit

Workshop #2 in series
Module 2: Broadcasting, NumPy Where, NumPy Select

Bob Chesebrough

Al Software Solutions Engineer

intel.

Learning Objectives

* At the end of the workshop you will be able to:

 Describe a Python loop replacement strategy using NumPy constructs which improves
readability, maintainability, performs fasts on current hardware and readies code for future
HW & SW accelerations that Intel builds into silicon and which are exposed via NumPy

 Describe NumPy clause to aid sorting, aggregations, reductions, broadcasting, and “where”
and “select” to significantly accelerate your Python code

* Describe the value of the Intel oneAPI Al Analytics Toolkit

* Describe underlying reasons for the acceleration due to NumPy powered by oneAPI

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

intel.

2

Intel” oneAPI

Al Analytics Toolkit =TI

Intel® Optimization for TensorFlow

Accelerate end-to-end Al and data analytics pipelines

.) Intel® Optimization for PyTorch
with libraries optimized for Intel® architectures

Intel® Neural Compressor

Who Uses It?

Data scientists, Al researchers, ML and DL developers, Model Zoo for Intel® Architecture
Al application developers

Intel® Al Analytics Toolkit

Machine Learning

Intel® Extension for Scikit-learn Intel-optimized XGBoost

Data Analytics

Intel® Distribution of Modin OmniSci Backend

Intel-optimized Python
Top Features/Benefits —
= Deep learning performance for training and inference with

Intel optimized DL frameworks and tools

= Drop-in acceleration for data analytics and machine learning
workflows with compute-intensive Python packages

Hardware support

CPU 19E Gpru

o

varies by individual tool. Architecture support will be expanded over time.

Get the Toolkit HERE or via these locations

17 :INALYTICS
oneAPI TOOLKIT
Intel Installer Docker Apt, Yum Conda Intel® DevCloud

Optimization Notice

Copyright © L2602 IM@ @ serEiwar Al NERlsGem{eaecapi/ai-kit

*Other names and brands may be claimed as the property of others.

Back to Domain-specific Toolkits for Specialized Workloads intel
o

w

https://software.intel.com/en-us/oneapi/ai-kit
https://software.intel.com/content/www/us/en/develop/tools/oneapi/download.html
https://intelsoftwaresites.secure.force.com/devcloud/oneapi
https://software.intel.com/content/www/us/en/develop/articles/installation-guide-for-intel-oneapi-toolkits.html
https://hub.docker.com/r/intel/oneapi-aikit
https://software.intel.com/content/www/us/en/develop/articles/oneapi-repo-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/installing-ai-kit-with-conda.html

Intel® Al Analytics Toolkit

Deep Learning Machine Learning

® .
Intel® Optimization for TensorFlow Intel® Extension for Scikit-learn Intel-optimized XGBoost

Intel® Optimization for PyTorch

Intel® Neural Compressor Data Analytics

Model Zoo for Intel® Architecture Intel® Distribution of Modin OmniSci Backend

Intel-optimized Python

Pandas

Optimization Notice
Copyright © 2022, Intel Corpor:
*Other names and brands may Hardware support varies by individual tool. Architecture support will be expanded over time.

Intel DevCloud

Register Using QR Code
Click Jupyter Icon link to sign in
Register And Login Here https://devcloud.intel.com/oneapi/get_started/

Connect with Jupyter* Lab

Connect with Jupyter* Notebook

Use Jupyter Notebook to learn about how oneAPI can solve the challenges of
programming in a heterogeneous world and understand the Data Parallel C++
(DPC++) language and programming model.

Sign in to Connect

* Follow the ReadMe:
» github.com/IntelSoftware/Machine-Learning-using-oneAPI/blob/main/README.md

oneAPI ©penVIN©~ intel@

Numpy — powered by oneAP]

. Stock version has oneAPI included

. Download oneAPI analytics toolkit

. Are you getting the performance you expect using NumPy?
. Are you using NumPy effectively?

. Note: Keep NumPy library up to date
. Are you using NumPy effectively?

intel.

6

https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-analytics-toolkit.html

Python is Great & Fast ...

 For rapidly proto typing ideas

 Tackling just about every imaginable coding task

* Getting project rolling quickly ... Examples of code are everywhere
 Easy: Dynamically typed — making programming easy

 Easy & Fast: : Leverage huge number of libraries, easily installable

* For Al: fast/no porting: easy portability of models across
architectures

Optimization Notice

L]
Copyright © 2022 , Intel Corporation. All rights reserved o Intel 7

ee

Python is SLOW

* For some things:

. REPEATED low level tasks

. Large loops

. Nested Loops

. List comprehensions (if large)

* BUT

. There are ways to mitigate its weaknesses
. Take advantage of those libraries

. NUMPY - this is powered by oneAPI !

. And others!

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

pandas Liy ‘\ﬁk H

intel.

8

Numpy Vectorization:

* This practice of replacing explicit loops with array expressions
Is commonly referred to as vectorization. In general,
vectorized array operations will often be one or two (or more)
orders of magnitude faster than their pure Python
equivalents, with the biggest impact [seen] in any kind of
numerical computations. - Wes McKinney

Optimization Notice

L]
Copyright © 2022 , Intel Corporation. All rights reserved o Intel .

ee

Vectorization is NOT just theory!

You will see, hear about the speedups possible, then you will experience it in code

This is why we strongly encourage the use of libraries powered by Intel oneAPI such as
Numpy, Scipy, and the rest

Get the goodness of Python but inherit vectorization speed inherent with Numpy
powered by Intel oneAPI

Speedup 102 X
Measure acceleration of looping versus Numpy Broadcast [Lower is better]

, 100 X speed up using Numpy broadcasting versus
loop

Various types of operations

Optimization Notice

L]
Copyright © 2022, Intel Corporation. All rights reserved. Intel

*QOther names and brands may be claimed as the property of others.

10

Why are these speedup so dramatic?

 Numpy takes advantage of vectorization: powered by Intel oneAPI
e Specifically, oneMKL, for vectorization

 Vector width allows multiple operations in single HW instruction.

* Many FP instructions

..) : AVX2: 256 bits: 8 floats wide
computed in single instruction

AVX512: 512 bits: 16 floats wide
y _/ J /J /S /4 /S /S S /S L /S LS S S S L

Copyright © nteI All r gh Intel -

*QOther nam db dmyblmd hppyfh

Optimization Notic

SIMD in a Nutshell

it

- AN

Loopy: (done one at a time)
foriin range(1,8):
c[i] = ali] + b[i]

d

b

SIMD: (all 8 locations done at
once via SIMD instructions)

c=a+b

intel =

We are comparing to simple loops in Python

In python, these operations

are COSTLY
Python is dynamically typed
Scalar |
* Has to check the data type before any operation 1
to ensure correct operations are applied
Even a simple integer is not simple 3
e A class or structure that contains 5
* reference counters and other values
: /7 + 4 = |11
* These are updated every operation
9 + ' 5 = 14

Optimization Notic

prgh©2022I tel Corporation. All r gh erved.
*QOthe nd bra dmyblmd hppyfh

suoljeldl] dooq

intel.

13

Effect of Non Contiguous Memory Access

A list of integers in python are NOT generally in contiguous locations
For this list: [1, 2, 3,4, 5, 6, 7, 8]

Accessing many of these in loops is VERY Costly (could be hundreds of clock cycles)

Optimization Notice

|
Copyright © 2022, Intel Corporation. All rights reserved. Intel 14
*QOther names and brands may be claimed as the property of others. ‘

Cache is used ineffectively

Modern Intel CPU’s read in Cache line of consecutive memory so that consecutive data is already to go
when needed. The cache line may contain 16 consecutive elements or more

Random reads from all over memory hurt performance

But with random reads, our next data element is read from a completely different place in memory —
wasting the remaining elements that were ready to be served from the cache line

This is analogous to a chef opening and cooking a single egg from a carton of 16 to service customer
number 1

Then then opening a NEW carton of eggs from a SECOND carton for customer number 2. The other eggs
get tossed out [analogous to cache line eviction]

These are SOME reasons why vectorization is better — it mitigates all the above

R & 2 N ’

Optimization Notice

L]
Copyright © 2022, Intel Corporation. All rights reserved. Intel 15
*QOther names and brands may be claimed as the property of others. .

Cache is used ineffectively with random memory accesses

Cache Eviction: Similar to not enough
room on the table
Table full of egg

, ()
cartons : l
' e
. 0 "

Ilgh vd
blmd hpp of other

Additionally: concerning memory

An array of integers in Numpy are contiguous
locations

Contiguous memory

Modern CPU’s return a cache line (like a carton of
addresses

eggs) for the contiguous memory elements nearby .|.|.|.|.|.|.|.|
one you chose to load initially. ilil—l ————— l
The assumption is: if | just used memory address .|.|=|=|=|=|=|=|
0x12345, then likely | will use 0x12346 very soon .!.!.!.!.!.!.!.!
I\ |
L
I

Opt imization Notic u t
Copyright © nteICorpor All rights ved I v
*Other nam db nds ma b I aimed a h p operty of other In e :

How do | move my code patterns

to NumPy?
. NumPy Vectorization encompasses...
. NumPy Universal Functions (Ufuncs)

. Aggregations

. Fancy Indexing

. Broadcasting

. NumPy Where & Select for Conditionals
. Are ALL loops vectorizable?

* We will give guidance

Optimization Notic

Copyri gh © 2022 Intel Corporation. All r gh erved. intel 18

*QOthe db dmyblmd hppyfh

How to create Numpy arrays

* From existing lists: np.array([1, 2, 3.0])
By dimensions but empty:

np.ndarray(shape=(2,2), dtype=float,

* By Shape —fill with zeros or ones:

>>> s = (2,2)
>>> np.zeros(s)

>»> 5 = (2,2)
>>> np.ones(s)

array([[0., 0.],
[6., ©.]])

array([[1., 1.],
[1., 1.]])

Optimization Notic .
intel =

prgh©2022I tel Corporation. All r gh erved.
*QOthe nd bra dmyblmd hppyfh

ufuncs

ufuncs are written in C (for speed) and linked into Python with NumPy’s
ufunc facility

Universal Functions Description: These are vectorized

Math operations add, subtract, multiply, divide, reciprocal, matmul, log, exp, square, sqrt, ...

Trigonometric sin, cos, tan, arcsin, arccos, arctan, hypot, sinh, cosh, tanh, degrees,
radians

Bit-twiddling bitwise_and, bitwise_or, bitwise_xor, invert, left_shift, right_shift
Comparison Functions greater, greater_equal, less, less_equal, not_equal, equal, logical _and,
logical_or, logical_xor, logical not

Floating Functions isfinite, isinf, isnan, isnat, fabs, signbit, copysign, nextafter, spacing,
modf, [dexp, frexp, fmod, floor, ceil, trunc

Optimization Notice

|
Copyright © 2022, Intel Corporation. All rights reserved. Intel 20
*QOther names and brands may be claimed as the property of others. :

NumPy Universal functions (ufunc):
Vectorized!

« ufuncis a “vectorized” wrapper for a function

« Implements vectorization support in Intel AVX2 and AVX512
« Takes a fixed number of specific inputs

« Produces a fixed number of specific outputs

« Applies function in per element-wise fashion.

 For detailed information on universal functions, see Universal functions (ufunc) basics.

import numpy as np

arr = np.trunc([-3.1666, 3.6667])

print(arr)
out:
[-3. 3.]

Optimization Notice

L]
Copyright © 2022, Intel Corporation. All rights reserved. Intel ~L
*QOther names and brands may be claimed as the property of others. ‘

https://numpy.org/doc/stable/glossary.html
https://numpy.org/doc/stable/user/basics.ufuncs.html

Sophisticated Indexing
* Slicing and Indexing can replace many common loop concepts

a = np.arange(100 000 000)
t1 = time.time()

b = np.arange(50 000 002) ‘
N = len(a)

for 1 in range (N):
if 1 % 2 == 0o:
b[1//2] = a[1]
t2 = time.time()

Results

Optimization Notic

|
Copyright © 2022, Intel Corporation. Al rights reserved. t I 22
*Other nd bra dmyblmd hppyfh Ine

NumPy Aggregation & Statistics Functions
funcions _[bescriptions These arevectoried

np.mean() Compute the arithmetic mean along the specified axis.
np.std() Compute the standard deviation along the specified axis.
np.var() Compute the variance along the specified axis.

np.sum() Sum of array elements over a given axis.

np.prod() Return the product of array elements over a given axis.
np.cumsum() Return the cumulative sum of the elements along a given axis.
np.cumprod() Return the cumulative product of elements along a given axis.

np.min(), np.max() Return the minimum / maximum of an array or minimum along an axis.

np.argmin(), Returns the indices of the minimum / maximum values along an axis
np.argmax()

np.all() Test whether all array elements along a given axis evaluate to True.
np.any() Test whether any array element along a given axis evaluates to True.

Optimization Notice
Copyright © 2022, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

NumPy Aggregations: Vectorized!

« Aggregation is an operation to reduce the dimensionality of an array or
vector

« Implements vectorization support in Intel AVX2 and AVX512

- Replace loops you are using to compute averages, sums, standard
deviation, min, max etc

« Use numpy aggregation instead. Its more readable, faster, and future

proof
A = np.array(A)
mean = A.mean()

A=[12 3]

for v in range(len(A)):
S += Vv
mean = S/len(A) y / J / .‘

|
Copyri gh ©2022| el Corporation. Al rights reserved. t I 24
*Othe nd bra dmyblmd hppyfh Ine

NumPy Aggregations: Vectorized!

Aggregations can be applied along different axes

A
[[1 2 3
45 6]]

A.sum(axis = 0) # array([5 7 9])

A.sum(axis = 1) ‘ array([6 157)

Optimization Notice

L]
Copyright © 2022, Intel Corporation. All rights reserved. Intel 25
*QOther names and brands may be claimed as the property of others. ‘

Aggregation: Example

a = np.arange(1 000 000).reshape(1000,1000)
t1 = time.time()

N = len(a)

sum = ©

Iiiiilaliilﬁliiilill

for 1 in range (N):
for j in range(N):
sum += af[i,j]
t2 = time.time()

speed up over naive loop

Optimization Notice

L]
Copyright © 2022, Intel Corporation. All rights reserved. Intel 26
*QOther names and brands may be claimed as the property of others. .

NumPy: Aggregation & Statistics

2 = np.arange(100_000_060)
sum = []

s =0

for 1 in range (N):
s += a[1i]
sum.append(s)

Result: 100 Million elements: roughly

Optimization Notice

L]
Copyright © 2022, Intel Corporation. All rights reserved. Intel =
*QOther names and brands may be claimed as the property of others. .

NumPy: Sorting: Quicksort

def quickSort(arr, low, high):

if low < high:
pivotIndex = partition(arr, low, high)

quickSort(arr, low, pivotIndex - 1)
quickSort(arr, pivotIndex + 1, high)

partition(arr, low, high):

pivot = arr[high]
i =1low - 1 # Index of smaller element

for j in range(low, high):
If current element is smaller than or equal to pivot
if arr[j] <= pivot: np.sort(arr, axis=None, kind='quicksort')
i+4=1
arr[i], arr[j] = arr[j], arr[i]
arr[i+1], arr[high] = arr[high], arr[i+l]

return 1 + 1

Link to Intel NumPYy article

Result: 1 Million elements: roughly
intel. =

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

https://www.phoronix.com/news/Intel-AVX-512-Quicksort-Numpy

a3 b (1) result (3)

”

(fefof) - B - fafife
sfretch’

NumPy Broadcasting: Vectorized!

« Support with AVX2 and AVX512 instructions
* Apply an operator with a scalar to each element in vector

« Also, apply operator with lower dimension vector to larger dimension

np.array([1.0 2.0 3.0]) a(3) b (1) result (3)

o[
b fafaf) - - ool

array([2. 4. 6.])

stretch

Optimization Notice .
intel 2

Copyright © 2022, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

a3 b (1) result (3)
(fefef) - (- - (]
stretch B

Broadcasting Graphically

Non-matching dimensions are extended and data copied at HW level
Once dimensions match the vectors can be added, subtracted etc

First example: a (3) b (1) result (3)
 a.shape (1, 3)

' 0 - ff-o = falele]
 b.shape (1,1) # extend/copy to (1, 3)) E

* result.shape (1, 3)

stretch

Optimization Notic

Copyri ght@ 2022 Intel Corporation. All rights reserved. intel

*QOthe db dmyblmd thpptyfth

30

a3 b (1) result (3)

- (e

(fefof) - B - fafife
sfretch’

Broadcasting Graphically

Non-matching dimensions are extended and data copied at HW level
Once dimensions match the vectors can be added, subtracted etc

Second example: result (4 3
- a.shape (4, 3)
 b.shape (1, 3) # extend/copy to (4, 3)
* result.shape (4, 3)

Optimization Notice

Copyri ght@ 2022 Intel Corporation. All rights reserved. intel

*QOthe db dmyblmd thpptyfth

31

a3 b (1) result (3)
(fefof) - B - fafife
sfretch’

Broadcasting Graphically

Non-matching dimensions are extended and data copied at HW level
Once dimensions match the vectors can be added, subtracted etc

Third example: result (4 x 3)

 a.shape (4, 1)
b.shape (1, 3) # extend/copy to (4, 3) *
D ' o - e

« result.shape (4, 3) 2| : | '
Bo poof

Optimization Notice

L]
Copyright © 2022, Intel Corporation. All rights reserved. Intel
*QOther names and brands may be claimed as the property of others. .

32

a3 b (1) result (3)

ol
) - G - (el

Broadcasting Example

Simple Multiplication table

B = np.zeros((N,N))
for 1 in range(N):

B = A.reshape(N,1) * A

for j in range(N):
B[1,]] = (i+1)*(J+1)

Optimization Notice

L]
Copyright © 2022, Intel Corporation. All rights reserved. Intel 33
*QOther names and brands may be claimed as the property of others. .

Numpy.where

numpy.where: Return elements chosen from x ory
depending on condition.

a = np.arange(10)
print(“a\n",a)

np.where(a < 5, a, 10%a)

a
[01234567 8 9]

array([¢, 1, 2, 3, 4, 50, 60, 70, 80, 90])

Optimization Notic

Copyri gh © 2022 Intel Corporation. All r gh erved. intel e

*QOthe db dmyblmd hppyfh

https://numpy.org/doc/stable/reference/generated/numpy.where.html

NumPy Where, NumPy Select

. If statements (conditional logic) might severely limit performance:

. Numpy: handles conditionals quickly, efficiently

New = np.empty like(T)
for i in range(len(T)):
if ((T[1i] < buyerPriceRangeHi) & (T[1] >= buyerPriceRangelo)):

New[i] = T[i] - 50 000/100 000
else:
New[i] = T[1i]

Results: ™

New = np.where((T < buyerPriceRangeHi) & (T >= buyerPriceRangelLo), T - 50 000/100 000, T)

Optimization Notice .
intel =

Copyright © 2022, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

Numpy Where

Find row, col indices fast

DBSCAN_array DBSCAN_array = np.array([[-1,2,1],[9,0,0],[0,1,2],[0,-1,-1]])
[[-1 2 1]
[@ 0 0] print("\nDBSCAN_array\n",DBSCAN_array)
[0 1 2]
[

0 -1 -1]] DBSCAN_Process = np.where(DBSCAN_array < 0,"Outlier()", "ProcessNormally()")
print (" \nDBSCAN Process\n",DBSCAN_Process)
now we can find where all the ones are by row and column

print("row index (where outliers are): ",np.where(DBSCAN_array < 0)[0])
print(“"col index (where outliers are): ",np.where(DBSCAN_array < 0)[1])

[['OuElier()' "ProcessNormally ()" 'ProcessNormally()"]
["ProcessnNormally()" 'ProcessNormally()' 'ProcessNormally()"']
["ProcessnNormally()" 'ProcessNormally()' 'ProcessNormally()"']

row index (where outliers are): [0 3 3]
'outlier()' 'outlier col index (where outliers are): [0 1 2]

'"Processhormall

Optimization Notice

L]
Copyright © 2022, Intel Corporation. All rights reserved. Intel 36
*QOther names and brands may be claimed as the property of others. .

Numpy.where: More Complex logic

one solution - preserves the indexing edges for easy checking

res = np.where((MultiplicationTable%12 == @) | (MultiplicationTable’9
res[0,:] = MultiplicationTable[o,:]

res[:,0] = MultiplicationTable[:,0]

()
-

[1, [1, 5, 7, 10],
[2, [2, 0, 0, 0],
[3, [3, 0, 0, 0],
[4, [4, 0, 0, o],
[5, [5, 0, o, 0],
[6, [6, 0, 0, 60],
[7, [7, 0, 0, 0],
[8, Results: [8, 0, 0, o],
[9, [9, 45, 63, 99]

[~ []

b e

=
o
-
)
-
@
-
o

Optimization Notice

L]
Copyright © 2022, Intel Corporation. All rights reserved. Intel =
*QOther names and brands may be claimed as the property of others. .

Numpy Select

Numpy.select:

e Return an array drawn from elements in choice list, depending on conditions.

 Great for pulling together elements or functions(elements) from different arrays,
DataFrames, different parts of the same array, etc

X = np.arange(6)
print("X\n",x)

condlist = [x<3, x>3]

choicelist = [x, x**2] X
[012345]
np.select(condlist, choicelist, 42) array([©, 1, 2, 42, 16, 25])

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

intel.

38

https://numpy.org/doc/stable/reference/generated/numpy.select.html

Numpy: Select Example

for 1 in range(BIG):
if A[1,4] == 10:
A[i,5] = A[i,2] * A[1,3]
elif (A[1i,4] < 10) and (A[1,4] >=5):
A[i,5] = A[i,2] + A[i,3]
elif A[i,4] < 5:
A[i,5] = A[i,0] + A[i,1]

condition = [(A[:,4] < 10) & (A[:,4] >= 5),
(A[:,4] < 5)]
choice = [(A[:,2] + A[:,3]),
(A[:,0] + A[:,1])]
default = [(A[:,2] * A[:,3])]
A[:,5] = np.select(condition, choice, default= default) ReSUItS: ~

Optimization Notice .
intel =

Copyright © 2022, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

A

The Pandas Connection Pandasr

* Pandas is built on top of Numpy
* All the methods describe before apply

* We will demonstrate alternative ways to achieve speedups
when Pandas Apply is slow due to conditional logic in the
custom called function

Optimization Notice

L]
Copyright © 2022 , Intel Corporation. All rights reserved . Intel 0
*QOther names and brands may be claimed as the property of others . .

Methods

 Use “Apply” for simple functions to apply to columns
* When things get slow, convert data to Numpy arrays
. to_numpy()

* Replace conditional logic in the Apply with Numpy.Where or
Numpy.Select

e |tis even possible to use Numpy. Select to manipulate Pnadas
dataframes directly

Optimization Notice

L]
Copyright © 2022 , Intel Corporation. All rights reserved o Intel 41

*QOther names and brands may be claimed as the property of others.

Using Numpy.Select as alternative to Pandas.Apply

df['new'] = df.apply(lambda x: func(x['a'], x['b"'], x['c'], x['d'], x['e']), axis=1)

def my function(x):
return np.log(1+x)

func(a,b,c,d,e):
if e == 10:
return c*d
elif (e < 10) and (e>=7):
return my_function(c+d)
elif e < 7:
return my_function(a+b+100)

Optimization Notice

L]
Copyright © 2022, Intel Corporation. All rights reserved. Intel Z
*QOther names and brands may be claimed as the property of others. .

Using Numpy.Select as alternative to Pandas.Apply

df['new'] = df.apply(lambda x: func(x['a'], x['b"'], x['c'], x['d'], x['e']), axis=1) ReSUItS:

npArr = df.to_numpy() # convert to numpy

condition = [(npArr[:,idx['e']] < 10) & (npArr[:,idx['e']] >= 7),
(npArr[:,idx['e']] < 7)]

choice = [(my_function(npArr[:,idx['c']] + npArr[:,idx['d"']])),
(my_function(npArr[:,idx['a']] + npArr[:,idx['b']] + 100))]

tmp = np.select(condition, choice, default= (npArr[:,idx['c']] * npArr[:,idx['d']]))
df.loc[:, 'new'] = tmp

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

intel.

43

Poll Audience
Live Demo/Lab

https://github.com/IntelSoftware/Machine-Learning-using-
oneAPl.git

Dive into Chapter 08

Optimization Notice

L]
Copyright © 2022 , Intel Corporation. All rights reserved o Intel &

ee

https://github.com/IntelSoftware/Machine-Learning-using-oneAPI.git
https://github.com/IntelSoftware/Machine-Learning-using-oneAPI.git

Call to Action

- Loops:

. Find large single, double, and triple nested loops in your code
and replace with Scipy/ Scikit-Learn®, or Numpy alternative

. Find time consuming list comprehensions and replace with a
Numpy alternative .

. If statements:

. replace with Numpy.where or Numpy.select options if possible

. Using array masking that follows the conditional logic

L]
Copyright © 2022, Intel Corporation. All rights reserved o Intel

45

Thanks for attending the session

intel =

BACKUP

Optimization Notice

L]
Copyright © 2022, Intel Corporation. All rights reserved. Intel <
*QOther names and brands may be claimed as the property of others. .

Notices &

= This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel
representative to obtain the latest forecast, schedule, specifications and roadmaps.

= The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on

request. No product or component can be absolutely secure. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or
service activation. Learn more at intel.com, or from the OEM or retailer.

= Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
complete information visit www.intel.com/benchmarks.

= INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

= Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its subsidiaries in the U.S. and other
countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Optimization Notice

]
Copyright © 2022, Intel Corporation. All rights reserved. Intel .
*Other names and brands may be claimed as the property of others. N

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

