
www.anl.gov

Distributed Deep Learning
Huihuo Zheng

Argonne Leadership Computing Facility
Argonne National Laboratory

October 11, 2023
huihuo.zheng@anl.gov



Argonne Leadership Computing Facility2

The need for distributed training on HPC
“Since 2012, the amount of compute used in the largest AI training runs has been increasing 
exponentially with a 3.5 month doubling time (by comparison, Moore’s Law had an 18 month 
doubling period).”

https://openai.com/blog/ai-and-compute/ Large language model: # parameters grows by 
about 10x every year



Argonne Leadership Computing Facility3

Training Large Natural Language Model is expensive

Narayanan, D et al. Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM. In Proceedings of the International 
Conference for High Performance Computing, Networking, Storage and Analysis; ACM: St. Louis Missouri, 2021; pp 1–15. 



Argonne Leadership Computing Facility4

Outline

• Parallelization Schemes

• Distributed Training Frameworks

• I/O and Data Management



Argonne Leadership Computing Facility5

Parallelization schemes
Worker 4

Worker 3 Worker 2

Worker 1

Model parallelism

Worker 1 Worker 2 Worker N 

…

Data parallelism

• Large model
• Local communication
• Not standard way of 

distributing  
• Load imbalance

• Large memory footprint 
• Collective communication
• Easy to implement
• Load balance



Argonne Leadership Computing Facility6

Parallelization schemes – Pipeline parallelism (PP)

• Partition model layers into multiple groups (stages) and place them on a set of inter-
connected devices. 

• Each input batch is further divided into multiple micro-batches, which are scheduled to 
run over multiple devices in a pipelined manner. 

Pipeline libraries: 
• GPipe: arXiv:1811.06965
• Pipe-torch: 

DOI: 10.1109/CBD.2019.00020
• PipeDream: arXiv:1806.03377 
• HetPipe: arXiv:2005.14038 
• DAPPLE: arXiv:2007.01045
• PyTorch Distributed RPC Frameworks: 

https://pytorch.org/tutorials/intermediate/
dist_pipeline_parallel_tutorial.html

• DeepSpeed: 
https://github.com/microsoft/DeepSpeed

https://pytorch.org/tutorials/intermediate/dist_pipeline_parallel_tutorial.html
https://pytorch.org/tutorials/intermediate/dist_pipeline_parallel_tutorial.html
https://github.com/microsoft/DeepSpeed


Argonne Leadership Computing Facility7

Distributed Training Frameworks

https://leimao.github.io/blog/PyTorch-Distributed-Training/
https://github.com/horovod/horovod
https://github.com/microsoft/DeepSpeed

• TensorFlow
• PyTorch
• Keras
• MXNet

PyTorch
PyTorch

$ module load conda/2023-10-04
$ conda activate

https://leimao.github.io/blog/PyTorch-Distributed-Training/
https://github.com/horovod/horovod
https://github.com/microsoft/DeepSpeed


Argonne Leadership Computing Facility8

Data parallel training

https://eng.uber.com/horovod/



Argonne Leadership Computing Facility9

Horovod
• Import Horovod modules and initialize horovod
• Scale the learning rate by number of workers
• Wrap optimizer in hvd.DistributedOptimizer
• Broadcast the weights from worker 0 to all the 

workers
• Worker 0 saves the check point files
• Dataset sharding: make sure different workers load 

different samples.

Instruction on how to change the code is here
Tensorflow: keras_cnn_verbose_hvd.py
Pytorch: pytorch_cnn_hvd.py

General practices
• Scale global batch size and 

learning rate in proportional 
to number of workers 

• A few warm up epochs with 
smaller learning rate to 
stabilize the training

• Adjust learning rate (and/or 
other hyperparameters) 
according to convergence 
behavior (different scales 
have different behavior)

• Avoiding averaging metrics 
on each training step. Only 
do averaging at the end of 
each epoch

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/blob/master/learningFrameworks/distributedDeepLearning/README.md
https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/blob/master/learningFrameworks/distributedDeepLearning/Horovod/keras_cnn_verbose_hvd.py
https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/blob/master/learningFrameworks/distributedDeepLearning/Horovod/pytorch_cnn_hvd.py


Argonne Leadership Computing Facility10

Scaling of Training Throughput on Polaris

ResNet50 (TF+HVD) CosmoFlow (PT+DDP)

99.0%
91.0%



Argonne Leadership Computing Facility11

11

Data Management and I/O

Devarajan, H.; Zheng, H.; Kougkas, A.; Sun, X.-H.; Vishwanath, V. DLIO: A Data-Centric Benchmark for 
Scientific Deep Learning Applications. (CCGrid; 2021; pp 81–91. 
DLIO Benchmark: https://github.com/argonne-lcf/dlio_benchmark.git
MLPerf Storage: https://mlcommons.org/en/news/mlperf-storage/

• Read intensive
• Metadata intensive

• Small and sparse I/O operations
• Random access

• Complex data format (json, text, key-value store)

• Multithreading background I/O

https://github.com/argonne-lcf/dlio_benchmark.git
https://mlcommons.org/en/news/mlperf-storage/


Argonne Leadership Computing Facility12

I/O Tracing for UNet3D workload
12

Training on GPULoading Data preprocessing

Timeline tracing for training the UNet3D workload on Polaris
• Multi-threading allowing overlap of compute and I/O

https://github.com/argonne-lcf/dlio_benchmark.git
UNet3D Model: https://github.com/mlcommons/training/tree/master/image_segmentation/pytorch

4 I/O workers

0 I/O workers 90s per epoch

19s per epoch

Waiting for data

https://github.com/argonne-lcf/dlio_benchmark.git


Argonne Leadership Computing Facility13

I/O Tracing for UNet3D workload
13

Loading Data preprocessing TrainingWaiting for data

w/o --cc depth -d

w --cc depth -d

• CPU binding is crucial for 
preprocessing 

w/ --cc depth –d w/o --cc depth –d
I/O 6s 30s
Preprocess 19s 89s



Argonne Leadership Computing Facility14

Scaling bottleneck from IO for UNet3D workload 
(simulated using DLIO Benchmark)

14

https://github.com/argonne-lcf/dlio_benchmark.git

UNet3D weak scaling I/O throughput

AU = compute_time/total_time Throughput = data_size/time

Accelerator utilization (AU) and I/O throughput at different scale on Polaris 
for UNet3D model, with Lustre file system and NVMe -> staging helps



Argonne Leadership Computing Facility15

Tips for I/O and data management
15

• Preprocess the raw data (resize, interpolation, etc) into 
binary format before the training; 

• Store the dataset in a reasonable way (file per sample, 
single shared file, or multiple samples per file)

• Optimal setting (Lustre stripe count, size)

• Remember to shard the dataset;
• Prefetch and caching the data (from disk; from host to 

device; staging to NVMe, SSDs); 

• Use more I/O workers to load data concurrently (e.g., 
adjust num_workers in TorchDataLoader)

Streaming I/O using Data Loader
• TensorFlow Data Pipeline
• PyTorch Data Loader
• Nvidia Dali Data Loader

Current issue on Polaris: TorchDataLoader num_workers>0 will cause hang on multiple 
nodesà use Dali Data Loader instead



Argonne Leadership Computing Facility16

Hands on
16

$ git clone git@github.com:argonne-lcf/ALCF_Hands_on_HPC_Workshop.git
$ cd ALCF_Hands_on_HPC_Workshop/learningFrameworks/distributedDeepLearning
$ cd Horovod/; qsub qsub_polaris.sc

mailto:git@github.com:argonne-lcf/ALCF_Hands_on_HPC_Workshop.git
https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master


Argonne Leadership Computing Facility17

Acknowledgments

• This research used resources of the Argonne Leadership Computing 
Facility, which is a DOE Office of Science User Facility supported under 
Contract DE-AC02-06CH11357. 

• We gratefully acknowledge the computing resources provided and 
operated by the Joint Laboratory for System Evaluation (JLSE) at 
Argonne National Laboratory.

17



Argonne Leadership Computing Facility18

Thank you!

huihuo.zheng@anl.gov


