

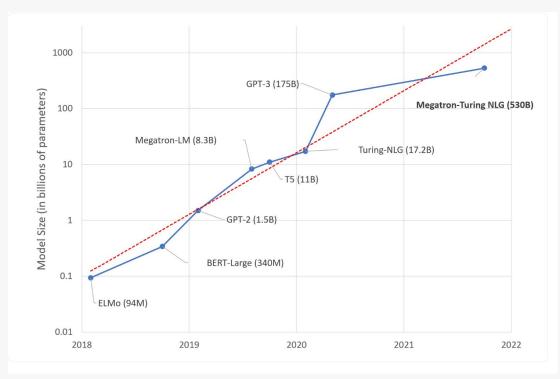
Distributed Deep Learning

Huihuo Zheng

Argonne Leadership Computing Facility Argonne National Laboratory

October 11, 2023

huihuo.zheng@anl.gov


www.anl.gov

The need for distributed training on HPC

"Since 2012, the amount of compute used in the largest AI training runs has been increasing exponentially with a 3.5 month doubling time (by comparison, Moore's Law had an 18 month doubling period)."

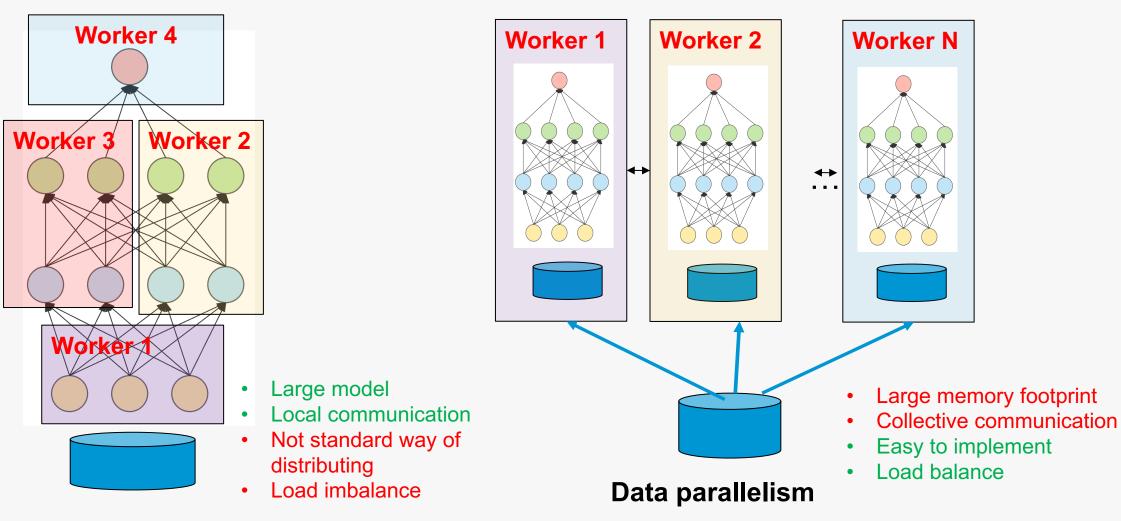
https://openai.com/blog/ai-and-compute/

Large language model: # parameters grows by about 10x every year

Training Large Natural Language Model is expensive

Scheme	Number of parameters (billion)	Model- parallel size	Batch size	Number of GPUs	Microbatch size	Achieved teraFIOP/s per GPU	Training time for 300B tokens (days)
ZeRO-3 without Model Parallelism	174.6	1	1536	384	4	144	90
				768	2	88	74
				1536	1	44	74
	529.6	1	2560*	640	4	138	169
			2240	1120	2	98	137
				2240	1	48	140
PTD Parallelism	174.6	96	1536	384	1	153	84
				768	1	149	43
				1536	1	141	23
	529.6	280	2240	560	1	171	156
				1120	1	167	80
				2240	1	159	42

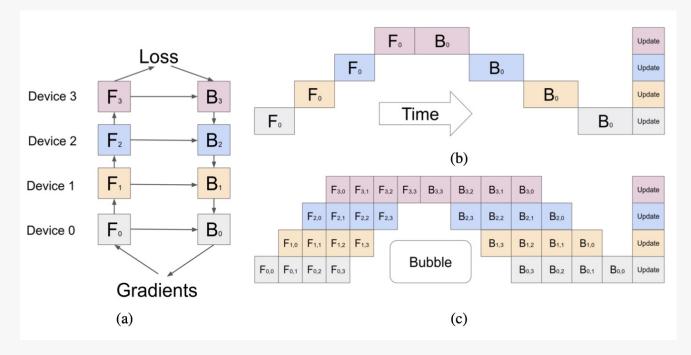
Narayanan, D et al. Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM. In *Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis*; ACM: St. Louis Missouri, 2021; pp 1–15.



Outline

- Parallelization Schemes
- Distributed Training Frameworks
- I/O and Data Management

Parallelization schemes


Argonne Leadership Computing Facility

5

Model parallelism

Parallelization schemes – Pipeline parallelism (PP)

Pipeline libraries:

- GPipe: arXiv:1811.06965
- Pipe-torch: DOI: 10.1109/CBD.2019.00020
- PipeDream: arXiv:1806.03377
- HetPipe: arXiv:2005.14038
- DAPPLE: arXiv:2007.01045
- PyTorch Distributed RPC Frameworks: <u>https://pytorch.org/tutorials/intermediate/</u> <u>dist_pipeline_parallel_tutorial.html</u>
- DeepSpeed: https://github.com/microsoft/DeepSpeed
- Partition model layers into multiple groups (stages) and place them on a set of interconnected devices.
- Each input batch is further divided into multiple micro-batches, which are scheduled to run over multiple devices in a pipelined manner.

Distributed Training Frameworks

PyTorch

PyTorch

- TensorFlow
- PyTorch
- Keras
- MXNet

\$ module load conda/2023-10-04
\$ conda activate

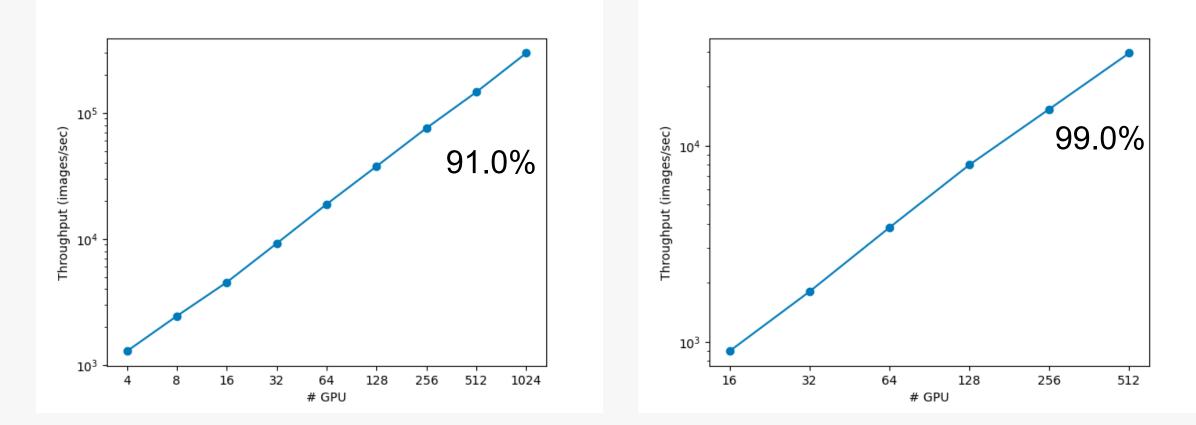
https://leimao.github.io/blog/PyTorch-Distributed-Training/ https://github.com/horovod/horovod https://github.com/microsoft/DeepSpeed

Data parallel training

https://eng.uber.com/horovod/

Horovod

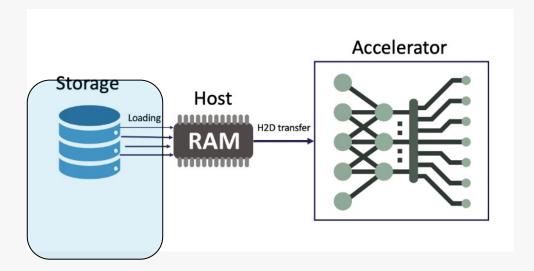
- Import Horovod modules and initialize horovod
- Scale the learning rate by number of workers
- Wrap optimizer in hvd.DistributedOptimizer
- Broadcast the weights from worker 0 to all the workers
- Worker 0 saves the check point files
- Dataset sharding: make sure different workers load different samples.


Instruction on how to change the code is <u>here</u> Tensorflow: <u>keras_cnn_verbose_hvd.py</u> Pytorch: <u>pytorch_cnn_hvd.py</u>

General practices

- Scale global batch size and learning rate in proportional to number of workers
- A few warm up epochs with smaller learning rate to stabilize the training
- Adjust learning rate (and/or other hyperparameters) according to convergence behavior (different scales have different behavior)
- Avoiding averaging metrics on each training step. Only do averaging at the end of each epoch

Scaling of Training Throughput on Polaris

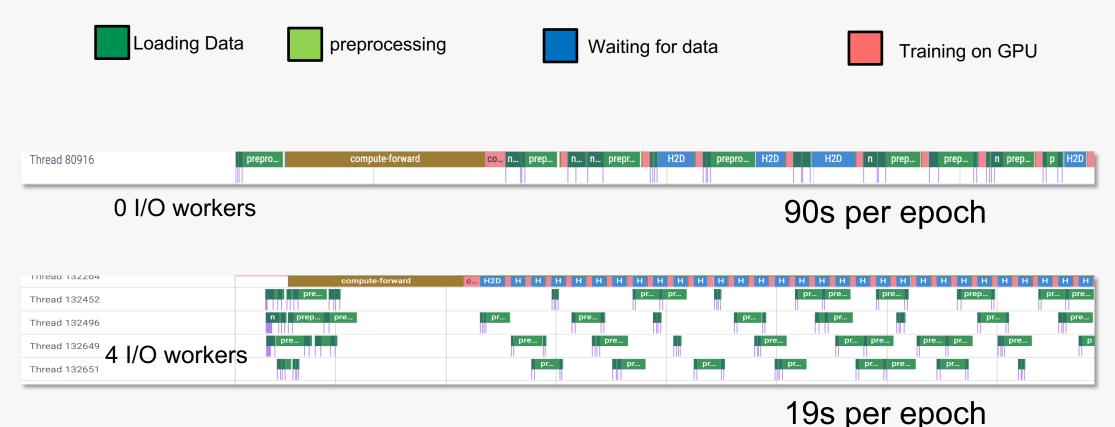


ResNet50 (TF+HVD)

CosmoFlow (PT+DDP)

Data Management and I/O

- Read intensive
- Metadata intensive
- Small and sparse I/O operations
- Random access
- Complex data format (json, text, key-value store)
- Multithreading background I/O

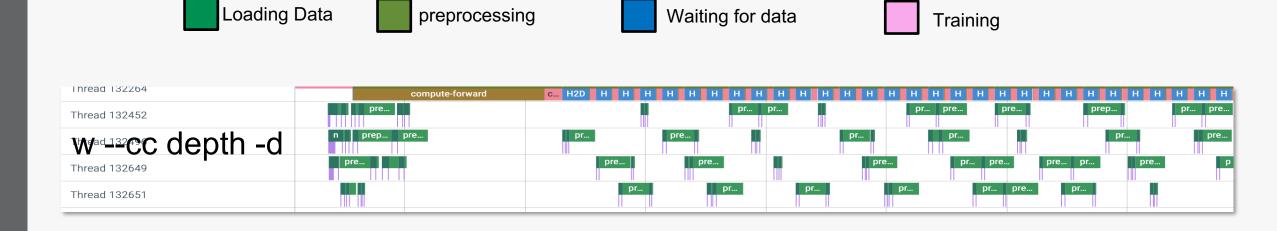

Devarajan, H.; Zheng, H.; Kougkas, A.; Sun, X.-H.; Vishwanath, V. DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications. *(CCGrid*; 2021; pp 81–91. DLIO Benchmark: <u>https://github.com/argonne-lcf/dlio_benchmark.git</u> MLPerf Storage: <u>https://mlcommons.org/en/news/mlperf-storage/</u>

I/O Tracing for UNet3D workload

12

12

Timeline tracing for training the UNet3D workload on Polaris


• Multi-threading allowing overlap of compute and I/O

 UNet3D Model: https://github.com/mlcommons/training/tree/master/image_segmentation/pytorch

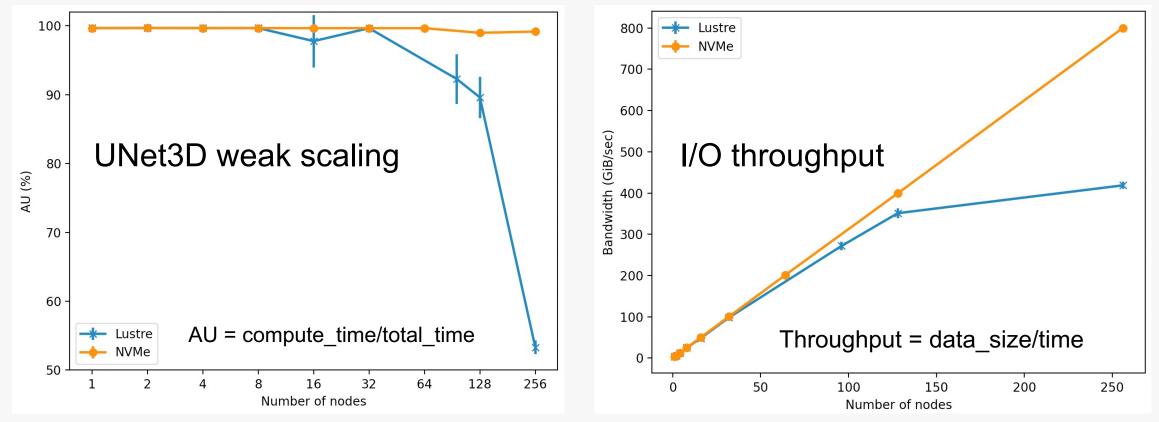
 Argonne Leadership Computing Facility
 https://github.com/argonne-lcf/dlio_benchmark.git
 Arg

I/O Tracing for UNet3D workload



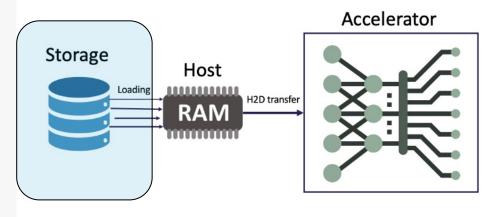
Inread 115144		compute-forward	H H H2D H2D H2D H2D H2D H2D H2D H2D H2D
Thread 115213		preproce prepro	n p preprocess n preprocess preprocess preproc
Thread 115217	w/a aa daath d	preprocess preproc	preprocess n n preprocess n p
Thread 115473	w/occ depth -d	preprocess prepro	preprocess n n preprocess n preprocess preproce
Thread 115732		preproce	preprocess n p p p n preprocess preprocess p p

 CPU binding is crucial for preprocessing


13

13 Argonne Leadership Computing Facility

Scaling bottleneck from IO for UNet3D workload (simulated using DLIO Benchmark)


Accelerator utilization (AU) and I/O throughput at different scale on Polaris for UNet3D model, with Lustre file system and NVMe -> staging helps

https://github.com/argonne-lcf/dlio_benchmark.git

Tips for I/O and data management

- Preprocess the raw data (resize, interpolation, etc) into binary format before the training;
- Store the dataset in a reasonable way (file per sample, single shared file, or multiple samples per file)
- Optimal setting (Lustre stripe count, size)
- Remember to shard the dataset;
- Prefetch and caching the data (from disk; from host to device; staging to NVMe, SSDs);
- Use more I/O workers to load data concurrently (e.g., adjust num_workers in TorchDataLoader)

Streaming I/O using Data Loader

- TensorFlow Data Pipeline
- PyTorch Data Loader
- Nvidia Dali Data Loader

Current issue on Polaris: TorchDataLoader num_workers>0 will cause hang on multiple nodes→ use Dali Data Loader instead

Hands on

16

\$ git clone git@github.com:argonne-lcf/ALCF_Hands_on_HPC_Workshop.git
\$ cd ALCF_Hands_on_HPC_Workshop/learningFrameworks/distributedDeepLearning
\$ cd Horovod/; qsub qsub_polaris.sc

argonne-lcf / ALCF_Hands_on_HPC_Worksh	op	Q Type [] to search	>- + • 💿 n 🖻 🦃		
<> Code 🕑 Issues 🚯 Pull requests 🕟 Actions	🗄 Projects 🖽 Wiki 😲 Security 🗠 Insights	袋 Settings			
I Files	ALCF_Hands_on_HPC_Workshop / learningFramewo	Add file 👻 ····			
♥ master	Stength04 added missing figures	f595d5b · 1 hour ago 🕚 History			
Q Go to file (t)	Name	Last commit message	Last commit date		
CouplingSimulationML extraMachineLearningMaterials	 DDP 	replaced image files	1 hour ago		
> 🖿 fs_sharing < 🦳 learningFrameworks	DeepSpeed	replaced image files	1 hour ago		
 learningranteworks istributedDeepLearning 	Horovod	replaced image files	1 hour ago		
> DDP	figures	added missing figures	1 hour ago		
> 🖿 DeepSpeed	C README.md	replaced image files	1 hour ago		
> Horovod	README.md		Ø :=		
 README.md gitkeep README.md IIm programmingModels python_notebook_containers tools visualization_io workflows gitignore 	Distributed Deep Learning & Author: Huihuo Zheng (huihuo.zheng@anl.gov). Goals of this tutorial • Understand model parallelism and data parallelism • Know how to modify your code with Horovod • Know how to run distributed training on supercomputer I. Introduction to Data Parallel Deep Learning &				
gitignore	I. Introduction to Data Parallel Deep Learning Ø				

Acknowledgments

- This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.
- We gratefully acknowledge the computing resources provided and operated by the Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory.

Thank you! huihuo.zheng@anl.gov

Argonne