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Surge of Scientific Machine Learning

• Simulations/ surrogate models
Replace, in part, or guide simulations 
with AI-driven surrogate models

• Data-driven models
Use data to build models without 
simulations

• Co-design of experiments
AI-driven experiments

Protein-folding

Braggs Peak

Galaxy Classification
Design infrastructure to facilitate and accelerate 
AI for Science (AI4S) applications

shows that the error is normally distributed around zero, which means that the model is not biased

thus the error is not systematic. As quantified using Euclidean distance in Figure 4c, most peaks

deviate little (e.g., 75% of peaks deviate less than 0.3 pixel) from the position identified by using the

conventional Voigt profiling. In comparison, the Maxima position (has resolution of one pixel) shown

in Figure 4d deviated much more than BraggNN from the truth (i.e., pseudo Voigt profiling).

4.2 Reconstruction Error Analysis

§4.1 discussed the direct model performance on peak localization. Since the 3D reconstruction is

our final goal, we also do reconstruction using peaks position located by the proposed BraggNN and

the conventional Voigt profiling separately. Figure 5 compares the positions of about 400 grains

reconstructed separately using Bragg peaks localized by BraggNN and conventional 2D pseudo-Voigt

profiling. The fact that the deviation directions are uniformly distributed indicates that BraggNN is

Figure 5: A comparison of grains in 3D space. Each ball represents one grain reconstructed by using

the conventional method, with color indicating the grain size(µm). An arrow indicates a deviation

from a grain to the corresponding grain reconstructed by using the BraggNN estimated peak.
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Integrating AI Systems in Facilities

AI-Accelerators

Experimental Facility
Supercomputers

Simulations

AI-Edge accelerator

SambaNova

Cerebras

Computing Facility

Data-driven Models
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ALCF AI Testbed

• Infrastructure of next-generation 
machines with AI hardware accelerators

• Provide a platform to evaluate usability 
and performance of AI4S applications

• Understand how to integrate AI systems 
with supercomputers to accelerate 
science

Cerebras CS-2 SambaNova DataScale 
SN30

Graphcore 
Bow Pod64

GroqRackHabana 
Gaudi1

https://www.alcf.anl.gov/alcf-ai-testbed
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ALCF AI Testbed

• Cerebras: 2 CS-2 nodes, each with 850,000 
Cores, compute-intensive models

• SambaNova: DataScale SN30 8 nodes 
(8 SN30 RDUs per node) - 1TB mem per 
device, models with large memory footprint 

• Graphcore: Bow Pod64 4 nodes 
(16 IPUs per node) - MIMD, irregular 
workloads such as graph neural networks

• GroqRack: 8 nodes, 8 GroqNodes per node - 
inference at batch 1

• Habana Gaudi1:  2 nodes, 8 cards per node - 
On-chip integration of RDMA over Converged 
Ethernet (RoCE2), scale-out efficiency

Cerebras CS-2 SambaNova DataScale 
SN30

Graphcore 
Bow Pod64

GroqRackHabana 
Gaudi1

https://www.alcf.anl.gov/alcf-ai-testbed
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Agenda 
https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds
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Director’s Discretionary (DD) awards 
support various project objectives from 
scaling code to preparing for future 
computing competition to production 
scientific computing in support of strategic 
partnerships.

Allocation Request Form

Getting Started on ALCF AI Testbed:
 
Apply for a Director’s Discretionary (DD) 
Allocation Award

AI Testbed User Guide

Cerebras CS-2, SambaNova Datascale SN30 
and Graphcore Bow Pod64 are available for 
allocations 

https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.alcf.anl.gov/alcf-ai-testbed
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AI Testbed Community Engagement

• AI training workshops
Cerebras: https://events.cels.anl.gov/event/420/
SambaNova: https://events.cels.anl.gov/event/421/
Graphcore: https://events.cels.anl.gov/event/422/

Tutorial at SC23 on Programming Novel AI accelerators 
for Scientific Computing  in collaboration with 
Cerebras, Intel Habana, Graphcore, Groq and 
SambaNova

https://events.cels.anl.gov/event/420/
https://events.cels.anl.gov/event/422/
https://events.cels.anl.gov/event/422/
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The old way:  kernel-by-kernel
Bottlenecked by memory bandwidth 

and host overhead

The Dataflow way: Spatial
Eliminates memory traffic and overhead

Simple 
Convolution 
Graph

Dataflow Architectures

Image Courtesy: SambaNova 
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SambaNova Cardinal SN30 RDU

7nm TSMC, 86B transistors

102 km of wire

640 MB on-chip, 
1,024 GB external

688 TFLOPS (bf16)

RDU-ConnectTM

Cardinal SN30TM

Reconfigurable Dataflow 
UnitTM

SILICON
RDU

SOFTWARE
SambaFlow™

SYSTEMS
DataScale®

as-a-SERVICE
Pre-trained 
Foundation Models

Image Courtesy: SambaNova 
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Cardinal SN30: Chip and Architecture Overview

TILE 5 TILE 6

TILE 7 TILE 8

Top-Level Interconnect

DDR PCIe

DRAM
(TBs)

● RDU broken up into 8-tiles
○ 160 PMU and PCUs per tile
○ Additional sub-components like coalescing units (CU) for 

connectivity to other tiles and off-chip components, switches 
to set up communication between PMU, PCUs, and CU

● Tile resource management: Combined or independent mode
○ Combined: Combine adjacent to form a larger logical tile for 

one application
○ Independent: Each tile controlled independently, allows 

running different applications on separate tiles concurrently.

● Direct access to TBs of DDR4 off-chip memory

● Memory-mapped access to host memory

● Scale-out communication support

Virtual Memory Manager

Host
Scale-Out

TILE 0 TILE 1

TILE 2 TILE 3

Image Courtesy: SambaNova 
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Cardinal SN30: Tile

13

Software-Driven Architecture
Tiled architecture with reconfigurable SIMD pipelines, distributed scratchpads, and programmed switches

Coalescing 
Unit

Coalescing
Unit

AG Address 
Generation 
Unit

S Switch PMU Pattern 
Memory 
Unit

PCU
Pattern 
Compute 
Unit

S SSS

S SSS

S SSS

S SSS

PMU

PMU

PMU

PMUPMU

PCU

PCU PCU

PCU

AG

AG

AG

AG

Coalescing 
Unit

Coalescing 
Unit

TILE 5 TILE 6

TILE 7 TILE 8

Top-Level Interconnect

DDR PCIe

DRAM
(TBs)

Virtual Memory Manager

Host
Scale-Out

TILE 0 TILE 1

TILE 2 TILE 3

Image Courtesy: SambaNova 
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Dataflow Architecture for Terabyte Sized Models

DataScale SN30-8R 

Dataflow Efficiency

+

Compute 
Capability

+

Large 
Memory Capacity

14

Image Courtesy: SambaNova 
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SambaNova DataScale SN30-8 System

• 8 x Cardinal SN30 Reconfigurable Dataflow Unit
• 8 TB total memory (using 64 x 128 GB DDR4 DIMMs)
• 6 x 3.8 TB  NVMe (22.8 TB total)
• PCIe Gen4 x16
• Host module

Image Courtesy: SambaNova 
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SambaFlow Architecture

Samba PyTorch API

RDUs

Runtime

CPU

Kernel Compiler 

Kernel Library Samba Runtime

Graph Compiler

Run PathCompilation Path

PEF

Image Courtesy: SambaNova 



Argonne Leadership Computing Facility17



Argonne Leadership Computing Facility18



Argonne Leadership Computing Facility19

Wafer-Scale Cluster

Image Courtesy: Cerebras 

Input preprocessing servers stream training data

MemoryX - Stores and streams model’s weights

SwarmX – weight broadcasts and gradient across 
multiple CS2s

Compilation (maps graph to kernels) Execution 
(training)
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Cerebras Weight Streaming Technology 

Disaggregate storage and compute
Enable scaling model size 

Image Courtesy: Cerebras 
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Graphcore Intelligence Processing Unit (IPU)

Slide Courtesy: Graphcore 
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Slide Courtesy: Graphcore 
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Slide Courtesy: Graphcore 
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Slide Courtesy: Graphcore 
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Slide Courtesy: Graphcore 
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Slide Courtesy: Graphcore 
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Cerebras 
CS2

SambaNova 
Cardinal 

SN30
Groq 

GroqRack
GraphCore 
GC200 IPU

Habana
Gaudi1 NVIDIA A100

Compute 
Units 850,000 Cores 640 PCUs 5120 vector 

ALUs 1472 IPUs 8 TPC + 
GEMM engine

6912 Cuda 
Cores

On-Chip 
Memory

40 GB L1, 
1TB+ MemoryX

>300MB L1
1TB 230MB L1 900MB L1 24 MB L1

32GB

192KB L1
40MB L2
40-80GB

Process 7nm 7nm 7 nm 7nm 7nm 7nm

System Size

2 Nodes 
including 

Memory-X and 
Swarm-X

8 nodes (8 
cards per node)

9 nodes 
(8 cards per 

node)

4 nodes 
(16 cards per 

node)

2 nodes
(8 cards per 

node)

Several 
systems

Estimated 
Performance 
of a card 
(TFlops)

>5780 (FP16) >660 (BF16) >250 (FP16)
>1000 (INT8) >250 (FP16) >150 (FP16) 312 (FP16), 

156 (FP32)

Software 
Stack Support

Tensorflow, 
Pytorch

SambaFlow, 
Pytorch

GroqAPI, 
ONNX

Tensorflow, 
Pytorch, 
PopArt

Synapse AI, 
TensorFlow 
and PyTorch

Tensorflow, 
Pytorch, etc

Interconnect Ethernet-based Ethernet-based RealScale TM IPU Link Ethernet-
based NVLink
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Challenges

• Understand how these systems perform for different workloads given diverse 
hardware and software characteristics

• What are the unique capabilities of each evaluated system
• Opportunities and potential for integrating AI accelerators with HPC computing 

facilities 
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Approach

• Perform a comprehensive evaluation with a diverse set of Deep Learning (DL) 
models*:
§ DL primitives: GEMM, Conv2D, ReLU, and RNN
§ Benchmarks: U-Net, BERT-Large, ResNet-50
§ AI4S applications: BraggNN, Uno
§ Scalability and Collective communications

• Evaluation of Large Language Models
⏤Transformer block micro-benchmark, GPT-2, and GenSLM

.

* Emani et al. “A Comprehensive Evaluation of Novel AI Accelerators for Deep Learning Workloads”, 
13th IEEE International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS) at SC 2022.
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Scaling UNet-2D Training
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Fig. 4: RNN Evaluation
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Scale across 1, 2, 4, and 8 devices with two batch sizes (BS)
GraphCore uses data-prefetching optimization, CS-2 uses 1 wafer-scale engine

Scaling plot of U-Net  
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(a) U-Net
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Fig. 5: Performance evaluation of U-Net, BERT, and BraggNN

the compute, memory, and interconnect capability of the
wafer-scale engine. Both SN10-8 and IPU-M2000 systems
reported lower throughput numbers than A100. These values
are 0.67⇥ and 0.61⇥ for 8 SN10 RDUs and 8 GC200 IPUs
compared with 8 A100s. For inference mode runs on a single
A100, GC200 IPU, and GroqCard with a BERT-Base model,
DistilBERT [73], the throughput measured is 76, 658, and
1012 respectively. Compared to an A100, we observed 9⇥ and
13⇥ improvements for batch-1 inference on an GC200 IPU
and GroqCard respectively. In GroqCards, the low latency of
the SRAM loading at 10TB/s contributes to this speedup.

3) ResNet-50: The evaluation results for this model are
shown in Figure 3(c) for both training and inference. The
throughput values for half/mixed (FP16/amp) precision com-
pared with full precision (TF32/FP32) for A100 and GC200
IPU systems are 2.75⇥ and 1.25⇥, respectively. The inference-
only Groq performs significantly better for this benchmark.
The pipeline efficiently streams data from MEM to the MXM
for the matrix multiplications and then to the VXM for
performant ReLU. The ResNet-50 implementation for A100
uses PyTorch, whereas GC200 IPU uses Tensorflow. We tested
for various combinations of batch sizes on all systems and have
captured the best performance for comparison.8

C. Evaluation of Scientific Machine Learning Applications

1) BraggNN: For this application, we measure the end-to-
end execution time in seconds and throughput for varying
batch sizes and 500 epochs for 25464 samples. This appli-
cation is run with FP16 precision on A100 and GC200 IPU,

8SN10-RDU and CS-2 do not currently support the ResNet-50 model.

BF16 on CS-2, and mixed precision on SN10 RDU. CS-2
leverages its multi-replica mode of execution with 16 replicas
on the wafer.9 As observed from the throughput results in
Table II, there are benefits of using a large batch size for
GC200 IPU 10, but the throughput gets worse with a very big
batch size because the training process changes from compute-
bound to IO-bound. We further measure the split of the end-
to-end execution time in Figure 5(c) which is composed of (a)
model training time and (b) fixed time which includes fabric
programming and data pipeline time. SN10 RDU and GC200
IPU achieve the lowest end-to-end execution time and achieve
up to 1.55⇥ and 1.46⇥ speedup compared to A100. However,
even though the fixed time on CS-2 is higher than other
systems, it still reports the highest throughput. On A100, the
fixed time is short, however, the model training time dominates
the end-to-end execution time. For the SN10 RDU, the forward
and backward graphs of BraggNN are mapped spatially on the
same chip. With the inference mode, measuring the latency
per image (microseconds), we observed 50 microseconds on
GroqChip compared against 570 microseconds on an Intel
Xeon CPU on average for an input size of 10K samples with
batch size 1.11

2) CANDLE Uno: While the A100 and IPU-M2000 sys-
tems use the TensorFlow-Keras framework, SN10-8 and CS-2
use PyTorch and TensorFlow-Estimator-based implementation.
For the compute-intensive AUC configuration of the Uno

9On A100, MIG mode was not a feasible option as it lacks inter-instance
communication support. Evaluation with MPS mode is ongoing work.

10GC200 uses 2 IPUs, one for training and other for validation
11Experiments of BraggNN in inference mode on A100 is ongoing work.

8

Batch Size 8 SN10 - RDUs 1 CS2 8 GC 200 
IPUs

32 2.1x 4.9x 10x

Increased Throughput over
8 A100s

*2x increase 
in latest sw 
release
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Scaling UNet-2D Training
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GraphCore uses data-prefetching optimization, CS-2 uses 1 wafer-scale engine
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the compute, memory, and interconnect capability of the
wafer-scale engine. Both SN10-8 and IPU-M2000 systems
reported lower throughput numbers than A100. These values
are 0.67⇥ and 0.61⇥ for 8 SN10 RDUs and 8 GC200 IPUs
compared with 8 A100s. For inference mode runs on a single
A100, GC200 IPU, and GroqCard with a BERT-Base model,
DistilBERT [73], the throughput measured is 76, 658, and
1012 respectively. Compared to an A100, we observed 9⇥ and
13⇥ improvements for batch-1 inference on an GC200 IPU
and GroqCard respectively. In GroqCards, the low latency of
the SRAM loading at 10TB/s contributes to this speedup.

3) ResNet-50: The evaluation results for this model are
shown in Figure 3(c) for both training and inference. The
throughput values for half/mixed (FP16/amp) precision com-
pared with full precision (TF32/FP32) for A100 and GC200
IPU systems are 2.75⇥ and 1.25⇥, respectively. The inference-
only Groq performs significantly better for this benchmark.
The pipeline efficiently streams data from MEM to the MXM
for the matrix multiplications and then to the VXM for
performant ReLU. The ResNet-50 implementation for A100
uses PyTorch, whereas GC200 IPU uses Tensorflow. We tested
for various combinations of batch sizes on all systems and have
captured the best performance for comparison.8

C. Evaluation of Scientific Machine Learning Applications

1) BraggNN: For this application, we measure the end-to-
end execution time in seconds and throughput for varying
batch sizes and 500 epochs for 25464 samples. This appli-
cation is run with FP16 precision on A100 and GC200 IPU,

8SN10-RDU and CS-2 do not currently support the ResNet-50 model.

BF16 on CS-2, and mixed precision on SN10 RDU. CS-2
leverages its multi-replica mode of execution with 16 replicas
on the wafer.9 As observed from the throughput results in
Table II, there are benefits of using a large batch size for
GC200 IPU 10, but the throughput gets worse with a very big
batch size because the training process changes from compute-
bound to IO-bound. We further measure the split of the end-
to-end execution time in Figure 5(c) which is composed of (a)
model training time and (b) fixed time which includes fabric
programming and data pipeline time. SN10 RDU and GC200
IPU achieve the lowest end-to-end execution time and achieve
up to 1.55⇥ and 1.46⇥ speedup compared to A100. However,
even though the fixed time on CS-2 is higher than other
systems, it still reports the highest throughput. On A100, the
fixed time is short, however, the model training time dominates
the end-to-end execution time. For the SN10 RDU, the forward
and backward graphs of BraggNN are mapped spatially on the
same chip. With the inference mode, measuring the latency
per image (microseconds), we observed 50 microseconds on
GroqChip compared against 570 microseconds on an Intel
Xeon CPU on average for an input size of 10K samples with
batch size 1.11

2) CANDLE Uno: While the A100 and IPU-M2000 sys-
tems use the TensorFlow-Keras framework, SN10-8 and CS-2
use PyTorch and TensorFlow-Estimator-based implementation.
For the compute-intensive AUC configuration of the Uno

9On A100, MIG mode was not a feasible option as it lacks inter-instance
communication support. Evaluation with MPS mode is ongoing work.

10GC200 uses 2 IPUs, one for training and other for validation
11Experiments of BraggNN in inference mode on A100 is ongoing work.

8

Batch Size A100 SN10 GC
32 18.8% 42% 79.5%
256 52% 28% 79.6%

Scaling efficiency
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GPT Model Performance
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MI250 (bs=16)

Used GPT-2 XL 1.5B parameter model
- same sequence length, tuned batch sizes
- 16 SN30 RDUs, 2 CS-2s, and 16 IPUs outperformed the runs on 64 A100s
- Scaling efficiencies range from 78% to 104%
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AI FOR SCIENCE APPLICATIONS

Protein-folding(Image: NCI)

Tokomak Fusion Reactor operations

Cancer drug response prediction

Imaging Sciences-Braggs Peak

 
Figure 1:  Data flow and summary of the FRNN algorithm 
 
Missing a real disruption (false negative) can be costly because of the damaging effects of a disruption, while triggering a false 
positive alarm wastes valuable experimental time and resources.  Setting the threshold allows a tradeoff between these two 

and more..

shows that the error is normally distributed around zero, which means that the model is not biased

thus the error is not systematic. As quantified using Euclidean distance in Figure 4c, most peaks

deviate little (e.g., 75% of peaks deviate less than 0.3 pixel) from the position identified by using the

conventional Voigt profiling. In comparison, the Maxima position (has resolution of one pixel) shown

in Figure 4d deviated much more than BraggNN from the truth (i.e., pseudo Voigt profiling).

4.2 Reconstruction Error Analysis

§4.1 discussed the direct model performance on peak localization. Since the 3D reconstruction is

our final goal, we also do reconstruction using peaks position located by the proposed BraggNN and

the conventional Voigt profiling separately. Figure 5 compares the positions of about 400 grains

reconstructed separately using Bragg peaks localized by BraggNN and conventional 2D pseudo-Voigt

profiling. The fact that the deviation directions are uniformly distributed indicates that BraggNN is

Figure 5: A comparison of grains in 3D space. Each ball represents one grain reconstructed by using

the conventional method, with color indicating the grain size(µm). An arrow indicates a deviation

from a grain to the corresponding grain reconstructed by using the BraggNN estimated peak.

9
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Genome-scale Language Models (GenSLMs)
   Goal:

• How new and emergent variants of pandemic causing viruses, (specifically SARS-
CoV-2) can be identified and classified.

• Identify mutations that are VOC (increased severity and transmissibility)
• Extendable to gene or protein synthesis.

Approach
• Adapt Large Language Models (LLMs) to learn the evolution.
• Pretrain 25M – 25B models on raw nucleotides with large sequence lengths.
• Scale on GPUs, CS2s, SN30.

GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics 
Winner of the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2022,
DOI:  https://doi.org/10.1101/2022.10.10.511571
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Genome-scale Language Models (GenSLMs)

Challenges
Scaling LLMs with 25B parameters:
• O (L^2) complexity in the attention computation
• Overcome communication overheads
• Sharding and the training time available on 
GPUs imposing limitations

Solution
Cerebras CS-2 wafer-scale 
cluster and Sambanova SN30 enables pre-training 
and finetuning.

Model Seq. length #Parameters Dataset

GenSLM-
Foundation

2048 25M, 250M, 
2.5B, 25B

110M

GenSLM 10240 25M, 250M, 
2.5B, 25B

1.5M

GenSLM-
Diffusion

10240 2.5B 1.5M
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GenSLMs on CS2

• Sequence Length = 10,240

• Trainable upto GPT3-13b model.

• Training with 4CS2, less than ½ day



Argonne Leadership Computing Facility42

GenSLMs on SN30
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SambaNova SambaNova Optimized Polaris Polaris Optimized

• Sequence Length = 1024

• Model Size 13B

• Achieves linear scaling 
across nodes.

• SN30 performance similar 
to 4 A100 on 1.17 release.

• Optimized on 1.18 to get 
10x speed-up.

• Pretraining and 
FineTuning on larger 
sequence lengths.



Argonne Leadership Computing Facility43

Observations, Challenges and Insights
• Significant speedup achieved for a wide-gamut of scientific ML applications
 - Easier to deal with larger resolution data and to scale to multi-chip systems

• Room for improvement exists
 - Porting efforts and compilation times 
 - Coverage of DL frameworks, support for performance analysis tools, debuggers

• Limited capability to support low-level HPC kernels 
• Work in progress to improve coverage
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Ongoing Efforts

• Evaluate new AI accelerators offerings and incorporate promising solutions as part of 
the testbed 

• Integrate AI testbed systems with the PBSPro scheduler to facilitate effective job 
scheduling across the accelerators 

• Evaluate traditional HPC on AI Accelerators

• Understand how to integrate AI accelerators with ALCF’s existing and upcoming 
supercomputers to accelerate science insights
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Recent Publications

• GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics 
Maxim Zvyagin, Alexander Brace, Kyle Hippe, Yuntian Deng, Bin Zhang, Cindy Orozco Bohorquez, Austin Clyde, Bharat Kale, Danilo Perez 
Rivera, Heng Ma, Carla M. Mann, Michael Irvin, J. Gregory Pauloski, Logan Ward,  Valerie Hayot, Murali Emani, Sam Foreman, 
Zhen Xie, Diangen Lin, Maulik Shukla, Weili Nie, Josh Romero, Christian Dallago, Arash Vahdat, Chaowei Xiao, Thomas Gibbs, Ian Foster,                
James J. Davis, Michael E. Papka, Thomas Brettin, Rick Stevens, Anima Anandkumar, Venkatram Vishwanath, Arvind Ramanathan              
** Winner of the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2022, 

  DOI:  https://doi.org/10.1101/2022.10.10.511571

• A Comprehensive Evaluation of Novel AI Accelerators for Deep Learning Workloads
Murali Emani, Zhen Xie, Sid Raskar, Varuni Sastry, William Arnold, Bruce Wilson, Rajeev Thakur, Venkatram Vishwanath, Michael E Papka, 
Cindy Orozco Bohorquez, Rick Weisner, Karen Li, Yongning Sheng, Yun Du, Jian Zhang, Alexander Tsyplikhin, Gurdaman Khaira, Jeremy 
Fowers, Ramakrishnan Sivakumar, Victoria Godsoe, Adrian Macias, Chetan Tekur, Matthew Boyd, 13th IEEE International Workshop on 
Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS) at SC 2022

• Enabling real-time adaptation of machine learning models at x-ray Free Electron Laser facilities with high-speed training optimized 
computational hardware                            
Petro Junior Milan, Hongqian Rong, Craig Michaud, Naoufal Layad, Zhengchun Liu, Ryan Coffee, Frontiers in Physics                                         
DOI: https://doi.org/10.3389/fphy.2022.958120



Argonne Leadership Computing Facility46

Recent Publications
• Intelligent Resolution: Integrating Cryo-EM with AI-driven Multi-resolution Simulations to Observe the SARS-CoV-2 Replication-

Transcription Machinery in Action* 
Anda Trifan, Defne Gorgun, Zongyi Li, Alexander Brace, Maxim Zvyagin, Heng Ma, Austin Clyde, David Clark, Michael Salim, David Har
dy,Tom Burnley, Lei Huang, John McCalpin, Murali Emani, Hyenseung Yoo, Junqi Yin, Aristeidis Tsaris, Vishal Subbiah, Tanveer Raza,J
essica Liu, Noah Trebesch, Geoffrey Wells, Venkatesh Mysore, Thomas Gibbs, James Phillips, S.Chakra Chennubhotla, Ian Foster, Rick
Stevens, Anima Anandkumar, Venkatram Vishwanath, John E. Stone, Emad Tajkhorshid, Sarah A. Harris, Arvind Ramanathan, 
International Journal of High-Performance Computing (IJHPC’22) DOI: https://doi.org/10.1101/2021.10.09.463779

• Stream-AI-MD: Streaming AI-driven Adaptive Molecular Simulations for Heterogeneous Computing Platforms 
Alexander Brace, Michael Salim, Vishal Subbiah, Heng Ma, Murali Emani, Anda Trifa, Austin R. Clyde, Corey Adams, Thomas Uram, 
Hyunseung Yoo,  Andrew Hock, Jessica Liu, Venkatram Vishwanath, and Arvind Ramanathan. 2021 Proceedings of the Platform for 
Advanced Scientific Computing Conference (PASC’21). DOI: https://doi.org/10.1145/3468267.3470578

• Bridging Data Center AI Systems with Edge Computing for Actionable Information Retrieval
Zhengchun Liu, Ahsan Ali, Peter Kenesei, Antonino Miceli, Hemant Sharma, Nicholas Schwarz, Dennis Trujillo, Hyunseung Yoo, Ryan 
Coffee, Naoufal Layad, Jana Thayer, Ryan Herbst, Chunhong Yoon, and Ian Foster, 3rd Annual workshop on Extreme-scale Event-in-
the-loop computing (XLOOP), 2021

• Accelerating Scientific Applications With SambaNova Reconfigurable Dataflow Architecture
Murali Emani, Venkatram Vishwanath, Corey Adams, Michael E. Papka, Rick Stevens, Laura Florescu, Sumti Jairath, William Liu, Tejas 
Nama, Arvind Sujeeth, IEEE Computing in Science & Engineering 2021 DOI: 10.1109/MCSE.2021.3057203.

* Fiinalist in the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2021
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Thank You

• This research was funded in part and used resources of the Argonne Leadership Computing 
Facility (ALCF), a DOE Office of Science User Facility supported under Contract DE-AC02-
06CH11357.

• Venkatram Vishwanath, Michael Papka, William Arnold, Varuni Sastry, Sid Raskar, Zhen Xie, 
Rajeev Thakur, Bruce Wilson, Anthony Avarca, Arvind Ramanathan, Alex Brace, Zhengchun Liu, 
Hyunseung (Harry) Yoo, Corey Adams, Ryan Aydelott, Kyle Felker, Craig Stacey, Tom Brettin, 
Rick Stevens, and many others have contributed to this material. 

• Our current AI testbed system vendors – Cerebras, Graphcore, Groq, Intel Habana and 
SambaNova. There are ongoing engagements with other vendors.

Please reach out for further details
Venkat Vishwanath, Venkat@anl.gov
Murali Emani, memani@anl.gov

mailto:Venkat@anl.gov
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Agenda 
https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds

