
Deep Learning Frameworks
Tensorflow, Pytorch, JAX

2 Argonne Leadership Computing Facility

Deep Learning Frameworks

• Tensorflow, Pytorch and JAX are the core deep learning frameworks supported on ALCF production resources.
• All three frameworks are accessible in python (and a few other languages, for tf/torch) and offer the core

elements of:
• Automatic differentiation;
• GPU offload and acceleration from python;
• Library of essential building blocks of machine learning operations;
• Performant ways to scale codes out to multiple devices
• An ecosystem of extensions and custom tools to make your life easier;
• Export your trained models to open source inference engines (ONNX, etc)
• All are open source; All will be supported on Aurora. Pick the one that makes sense for your problem!

Argonne Leadership Computing Facility3

Tensorflow

• The oldest of the frameworks shown today, tensorflow is developed by Google.
• Excellent performance on both CPU and GPU

• Why care about CPU? Large scale inference on CPU-only systems.

• Major version change between v1.X and 2.X - only 2.X is “officially” supported in
our installs, focus on 2.X

• Important links:
• Tensorflow basics - start here for basic syntax, etc
• Keras - A high level API to make tensorflow even easier. May or may not fit your needs but a

great entry point.
• Mixed Precision - Essential to acheive peak performance on Polaris
• XLA - Worth a try for models that have fusable operations, especially in reduced precision

https://www.tensorflow.org/guide/basics
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/mixed_precision
https://www.tensorflow.org/xla

Argonne Leadership Computing Facility4

Tensorflow at ALCF
• Installed in our conda modules:

⏤ conda/2023-10-02 has TF v2.13.0 in python 3.10.12

• Performance considerations:
1. Use mixed precision if possible!

1. A100 gpus have TensorCore accelerators for reduced precision (TF32, FP16)
2. Easiest way to enable is via keras mixed_precision.Policy(“mixed_float16”)

2. Use `tf.function` syntax on your high level functions to enable graph tracing and operation merging.
1. It’s as simple as putting `@tf.function` as decorators on your functions
2. It has a number of “gotchas” if you need dynamic models - often its useful to graph-compile subsets of your code

instead of the entire thing!
3. Use XLA (or at least test w/ XLA) to check for performance boosts from XLA compilation.

1. This is in addition to tf.function! XLA will only compile code that is traced in a graph.
2. Can enable with either:

1. just one environment variable change: TF_XLA_FLAGS=--tf_xla_auto_jit=2
2. Arguments to tf.function(jit_compile=True)

3. Downsides: profiling XLA compiled code is more challenging due to operator fusion and renaming.

Argonne Leadership Computing Facility5

Pytorch
• The other main DL framework, developed by

Facebook and more “numpy-like” than
tensorflow.

• Until v2.0, didn’t support compilation like
Tensorflow - this is now changed but your
mileage may vary while this becomes more
widespread.

• Pytorch is more “pythonic” than tensorflow, and
features dynamic operations instead of graph
computation as the main mode.

• Pytorch has a larger ecosystem of extensions and
has been growing faster than tensorflow in recent
years

• Out of the box performance is on par with
Tensorflow.

• For models with many small operations,
compilation is worth exploring.

Argonne Leadership Computing Facility6

Pytorch at ALCF

• Installed in our conda modules:
• conda/2023-10-02 has torch v2.0.1 in python 3.10.12

• Performance and other considerations:
• Pytorch 2.0 is backwards compatible with v1.X
• Reduced precision is easiest with automatic reduced precision
• Graph compilation is technically available but your experience on your model may be unique.

• We welcome reports of success/failure and performance changes with graph compilation - it’s expected
to be a useful feature for performance moving forward!

• If you require low latency or integration into another C++ code, pytorch has a native C++ frontend “libtorch”
• Torch 2.0 claims to implement high-efficiency functional transforms inspired by JAX, to enable hessians,

jacobians, JVPs.
• Pytorch ecosystem has gaussian processes, graph networks, geospatial data enablements, and many more.

https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html
https://pytorch.org/tutorials/advanced/cpp_frontend.html
https://pytorch.org/tutorials/intermediate/jacobians_hessians.html#batch-jacobian-and-batch-hessian
https://pytorch.org/ecosystem/

Argonne Leadership Computing Facility7

JAX
• JAX is the new framework, arising from a combination of autograd (automatic differentiation for numpy) and

XLA enablement of numpy (aka, numpy operations on the GPU).

• JAX is purely functional - no sideeffects allowed in your traced functions.

• JAX utility driven in large part by functional transformations:
• jit is functional tracing which can enable massive performance gains.
• vmap/pmap enable automatic vectorization (and not just over batch size - any axis!) Write a function over tensor sizes that

make sense and let JAX / XLA help you scale it up.
• grad computation and other derivatives are likewise functional transforms - grad(f) returns a function that computes the

gradient of f. It does not explicitly return the gradient!
• This means that you can apply vmap or other transformations to gradient tranformations too, enabling efficient

differentiation in ways that are challenging to do in TF / Torch

• JAX documentation has the best autodifferentiation documentation of all frameworks - even if you want to use
tf/torch, JAX might have the best explanation of how the operations work and what modes get the best
performance.

https://jax.readthedocs.io/en/latest/jax-101/02-jitting.html
https://jax.readthedocs.io/en/latest/jax-101/03-vectorization.html
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html

Argonne Leadership Computing Facility8

JAX at ALCF

• Installed in our conda modules:
• conda/2023-10-04 has JAX v0.4.17 in python 3.10.12

• Jax can also leverage reduced precision but it is not as clear-cut and simple: changing the datatype of a
function’s input can cause retracting, and much of it is manual.

• JAX also has some “sharp bits”: non-mutable arrays, deterministic random number generators, etc.
• Check out the guide to the sharp bits for more info.

• There are two straightforward ways to scale out:
• officially supported pmap
• mpi-enabled mpi4jax
• They can also be used in concert with each other: pmap on a node, mpi4jax for multi-node communication

https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html
https://jax.readthedocs.io/en/latest/multi_process.html
https://github.com/mpi4jax/mpi4jax

Argonne Leadership Computing Facility9

Porting Existing Projects
• You’re encouraged to bring your existing code to LCF systems!

• Often, the frameworks we install are the lowest barrier to entry: we’ve tested to ensure everything works, built many
things from source to ensure compatibility with the latest drivers and mpi.

• You can extend our modules with virtual environments.
• There is no possibility to install every package that everyone wants in our conda environments.
• So, load the module and create a python virtual environment to install your additional packages
• python -m venv --system-site-packages /path/to/desired/virtualenv/folder

• You can also use the `--user` option when doing `pip install` or building a package from source.
• Please note that most ALCF production systems share a home directory, and its very easy to install something on

Polaris that breaks your workloads on ThetaGPU (for example).
• This really isn’t the recommended path for software installation!

• If you want to install everything yourself - go for it!
• conda is a good way to get a python install and package manager
• Any issues or challenges should be reported to support@alcf.anl.gov for assistance.
• Be careful with “all in one” installs - the pypi packages that deliver cuda components can easily conflict between two

packages in a way that will break your application. Reach out if you need guidance.

Argonne Leadership Computing Facility10

Create a new Frameworks App

• Which framework should you choose?
• Do you need CPU-based inference after training on another system?

• Tensorflow, or exportable to ONNX, is useful here
• Do you want ability for fast prototyping of models?

• Pytorch is generally considered the “easiest” framework.
• Do you need unusual operations, differentiation steps (hessians, or higher order grads)?

• JAX is likely your best bet
• Do you have large-scale requirements? High efficiency scale out, or the need for deepspeed or other model-

parallelization?
• Pytorch DDP and Deepspeed are well optimized on polaris.

• Integrate into a C++ framework?
• Libtorch is a good fit

• Other unique constraints? Feel free to brainstorm with ALCF staff at this workshop!

Argonne Leadership Computing Facility11

Where to get help?
• support@alcf.anl.gov is your best stop to definitely get help. Frameworks-based questions will make it to the

relevant experts in the datascience team.

• Ask us at this workshop:
• Multiple members of the datascience team here and happy to help.

Questions?

