ALCF WORKSHOP 2023

CALCULATION OF NUCLEAR GROUND STATES USING ARTIFICIAL NEURAL NETWORKS.

Corey Adams Computational Scientist, Physicist ALCF Datascience Group

COLLABORATORS

A. Lovato (ANL) A. Gnech (JLAB) N. Brawand (ANL)

G. Carleo (EPFL) N. Rocco (FNAL) K. Hossain (ANL)

INTRODUCTION

Why nuclear physics?

Atomic Nuclei are many-body systems governed by the strong interaction, which exhibit emergent properties such as: shell structure, pairing and superfluidity, deformation, and self-emerging clusters.

Understanding how the properties of nuclei emerge from QCD is a long-standing goal of nuclear physics.

NUCLEAR MANY BODY PHYSICS

At low energies, the quarks and gluons are **confined** within the hadrons: protons, neutrons and pions.

We can approximate QCD through effective field theories, allowing us to compute observables

PION-LESS NUCLEAR HAMILTONIAN

An Effective Field Theory with 2- and 3- body interactions

$$v_{12} = C_1 v_{\Lambda}(r_{12}) + C_2 v_{\Lambda}(r_{12})\sigma_{12}$$

 C_1 and C_2 fit to nucleon-nucleon scattering data

THE NUCLEAR MANY-BODY PROBLEM

§ The non-relativistic many body theory is solving the Schrodinger equation:

$$H\psi_n(R) = E_n\psi_n(R) \qquad R = (\vec{x}_1, s_{1,z}, \tau_{1,z}...)$$

$$H \equiv V(R) - \frac{\hbar^2}{2m} \nabla^2$$

§ The exact solution of this is **exponentially hard.**

§ The methods described in this talk solve this equation approximately, and while we target Nuclear many-body systems it is broadly applicable to many-body quantum systems.

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

VARIATIONAL MONTE CARLO

§ The Variational Principle of Quantum Mechanics guarantees that for any variational state, the expectation of the energy of that wavefunction is greater than the ground state:

$$\psi_T = \psi_T(R, \vec{\theta}) \qquad E_T = \frac{\langle \psi_T | H | \psi_T \rangle}{\langle \psi_T | \psi_T \rangle} \ge E_0$$

§ Trial wavefunctions are parametrized in some way, and so you may optimize the trial wavefunction to reduce the expectation of the energy.

$$min(E_T): \theta_j \to \theta_j - \eta \frac{\partial}{\partial \theta_j} E_T$$

§ Ultimately, the lowest energy found represents the best approximation of the ground state.

COMPUTING EXPECTATION VALUES

§ The trial wavefunction, in just one dimension, is simple to compute numerically. But with many-body problems in 3 dimensions, the number of dimensions in the integral scales as $3xN_{particles}$.

$$E_t = \frac{\int dr \Psi_T^*(r,\vec{\theta}) H \Psi_T(r,\vec{\theta})}{\int dr \Psi_T^*(r,\vec{\theta}) \Psi_T(r,\vec{\theta})} \qquad r \equiv (\vec{r_1}, \vec{r_2}, \dots \vec{r_N})$$

§ Sampling this integral in a dense or even adaptive way is computationally very very hard!§ The central limit theorem provides a way to approximate this multi-dimensional integral.

M(RT)² SAMPLING

- § We can compute the energy for any trial wavefunction as long as we sample x_i from the probability distribution $P(x_i)$.
- **§** The M(RT)² algorithm* provides a technique to sample from any arbitrary probability distribution under general conditions.
- § Referring to each collection of nucleons as a "walker," compute the observables with N total walkers
- § This algorithm performs a walk in both Cartesian coordinates AND spin/isospin.

*named for N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller

https://github.com/Nuclear-Physics-with-Machine-Learning/AI4NP_School/blob/main/Lectures/MLNP_school_I.pdf

ANTI-SYMMETRY

§ A wavefunction of many fermions must be anti-symmetric under the exchange of any two particles. We enforce this directly in the network with the Slater determinant, in combination with a fully-symmetric DeepSets based correlator (U)

$$S = \begin{pmatrix} \langle x_1 | \zeta_1 \rangle & \langle x_2 | \zeta_1 \rangle & \dots & \langle x_N | \zeta_1 \rangle \\ \langle x_1 | \zeta_2 \rangle & \langle x_2 | \zeta_2 \rangle & \dots & \langle x_N | \zeta_2 \rangle \\ \vdots & \ddots & \vdots \\ \langle x_1 | \zeta_N \rangle & \langle x_2 | \zeta_N \rangle & \dots & \langle x_N | \zeta_N \rangle \end{pmatrix}$$

 $|\zeta_i\rangle = |R_i\rangle |s_i\rangle |\tau_i\rangle$

$$S_{\text{deuteron}} = \begin{pmatrix} \langle x_1 | R_1 p \uparrow \rangle & \langle x_2 | R_1 p \uparrow \rangle \\ \langle x_1 | R_2 n \uparrow \rangle & \langle x_2 | R_2 n \uparrow \rangle \end{pmatrix}$$

 x_i is a generalized coordinate of spatial position, spin, and isospin.

NEURAL NETWORK QUANTUM STATES

§ In general, we need a wavefunction of the form (S is matrix):

$$\psi(\vec{r}_1, \dots \vec{r}_N) = e^{U(\vec{r}_1, \dots \vec{r}_N)} \det(S)$$

§ In practice, we enforce full symmetry of the correlator under exchange of particles using the **DeepSets** formalism:

$$U(\vec{r}_1, ..., \vec{r}_A) = \rho_U \left(\sum_{\vec{r}_i} \phi_U(\vec{r}_i) \right) \qquad \phi, \rho = ANN$$

§ Each particle's location is mapped to a latent space, and the latent space of all particles is summed to destroy individual interactions, then mapped to a single value.

ENCODING CORRELATIONS

§ We can enhance the encoding of particle-to-particle correlations with Message Passing Graph Neural Networks -maintaining .

We **replace** the inputs to the Slater determinant and correlator with the output of the message passing graph neural network.

This approaches a universal approximator as the variational state.

NEURAL NETWORK PHYSICALITY

- § The neural network implementation must also obey physical constraints: must be twice differentiable, continuous in the first derivative, and for a bound state must go to 0 at infinity.
- § In practice, we enforce this with select activation functions (yes to tanh/sigmoid, no to ReLU!). A correlator function U is also augmented with a confinement term (goes to 0 at infinity):

$$U(\vec{r}_1, ..., \vec{r}_A) = \rho_U \left(\sum_{\vec{r}_i} \phi_U(\vec{r}_i) \right) - \alpha \sum_i \vec{r}_i^2$$

STOCHASTIC RECONFIGURATION

§ The gradients computed above can be improved via "Stochastic Reconfiguration" – <u>https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.241103</u>

$$S_R^{mn} \equiv \langle O^m O^n \rangle - \langle O^m \rangle \langle O^n \rangle \qquad \qquad S_{R,\epsilon}^{-1} \equiv (S_R + \mathbb{I}\epsilon)^{-1}$$

§ Effectively, this flattens the space of optimization and is a 2nd order approach

$$\theta_j \to \theta_j - \eta \sum_j S_{R,\epsilon}^{-1} \frac{\partial}{\partial \theta_j} E_T$$

§ But, this requires the jacobian matrix of the network!

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

ALGORITHM SUMMARY 1

- § For a trial wavefunction, create sets of N_{walkers} to use for a numerical integration.
- § Thermalize the walkers for N_{therm} iterations at the start; between each measurement use N_{void} steps to remove correlations in measurements.
- § For each set of thermalized, de-correlated walkers, compute the observable properties:
 - E_T, it's variational derivatives, the reconfiguration matrix S_{ij}.

ALGORITHM SUMMARY 2

 $\$ Accumulate the **observables** for N_{obs} iterations;

$$G^{i} \equiv \frac{\partial \langle E_{T} \rangle}{\partial \theta_{i}} = 2 \left(\langle O^{i} H \rangle - \langle E_{T} \rangle \langle O^{i} \rangle \right)$$

 $S_R^{mn} \equiv \left\langle O^m O^n \right\rangle - \left\langle O^m \right\rangle \left\langle O^n \right\rangle$

§ Update the wave function according to the accumulated observables and the update rule:

$$\theta_j \to \theta_j - \eta \sum_j S_{R,\epsilon}^{-1} \frac{\partial}{\partial \theta_j} E_T$$

Thermalize O(5000) stepsMeasurement of G, S, Update θ De-correlate O(500) stepsMeasurement of G, S, Update θ De-correlate O(500) stepsMeasurement of G, S, Update θ

... Until Convergence

De-correlate O(500) steps Measurement of G, S, Update θ

COMPUTATIONAL EFFICIENCY

§ This algorithm can (and has been) implemented in there DL frameworks (TF, Torch, Jax). Jax is the clear winner for computational efficiency.

§ Torch is imperative: the "walk" algorithm is too slow, and makes terrible use of the GPU.

- LibTorch is better, but has concurrency issues when computing the Jacobian matrix.
- Generally torch is great when each GPU op is Big. It falls over when there are many many small ops.
- § Tensorflow is better, but it's graph compilation stage can be tedious and detrimental to start-up times as the problem size scales up.
 - Has excellent scaling properties, though!

COMPUTATIONAL EFFICIENCY (2)

§ The non-traditional derivatives of this algorithm also are a challenge:

- Need first and second derivative with respect to input variables
- Need a jacobian with respect to model parameters
- No simple vectorization and poor performance with both TF (jacobian) and Torch (both!)
- § Jax offers a solution to all of this:
 - Easy to compile the many-small-ops Metropolis algorithm
 - Easy to vectorize the gradient of the wavefunction over all parameters (Jacobian)
 - Easy to vectorize the 2nd derivatives.

§ In short: if you have a "weird" algorithm using machine learning, Jax is awesome.

SOLVING THE DEUTERON

NUCLEI UP TO A=6

Nucleus	Potential	ANN		HH		Exp.	
		$E({ m MeV})$	$r_{ m ch}({ m fm})$	$E({ m MeV})$	$r_{ m ch}({ m fm})$	$E({ m MeV})$	$r_{ m ch}({ m fm})$
$^{2}\mathrm{H}$	NN	-2.242(1)	2.120(5)	-2.242	2.110(2)	-2.225	2.128
³ H	$\frac{NN}{3N}$	$-9.511(1) \\ -8.232(1)$	$1.658(4) \\ 1.750(3)$	$-9.744 \\ -8.475$	1.656(4) 1.747(6)	-8.475	1.755(86)
³ He	$\frac{NN}{3N}$	$-8.800(1) \\ -7.564(1)$	$1.845(3) \\ 1.961(3)$	$-9.035 \\ -7.811$	$1.848(6) \\ 1.969(8)$	-7.718	1.964(1)
$^{4}\mathrm{He}$	$\frac{NN}{3N}$	$-36.841(1) \\ -27.903(1)$	1.484(3) 1.643(2)	$-37.06 \\ -28.17$	$1.485(4) \\ 1.646(4)$	-28.30	1.678
⁶ He	$\frac{NN}{3N}$	$-37.25(4) \\ -27.46(2)$	1.895(2) > 4.89(1)	$-37.96(8) \\ -27.41(8)$	1.71(1) > 2.73	-29.27	2.05(1)
⁶ Li	$\frac{NN}{3N}$	$-42.04(1) \\ -30.82(3)$	2.248(3) 3.049(2)	$-42.51(5) \\ -31.00(8)$	2.09(2) > 2.74	-31.99	2.54(3)

Table 1 from https://link.springer.com/article/10.1007/s00601-021-01706-0

CONVERGENCE OF HELIUM

The point-nucleon density of ⁴He compared to the classical, Green's field Monte Carlo Technique –accurate over 4 orders of magnitude.

BENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

SCALING TO LARGER NUCLEI

As the number of walkers increases, both computational time and memory usage increases.

The only solution to reach larger nuclei is to **parallelize** the algorithm.

SCALING TO LARGER NUCLEI

As the number of walkers increases, both computational time and memory usage increases.

The only solution to reach larger nuclei is to **parallelize** the algorithm.

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

PARALLELIZATION STRATEGY

SCALING UP ON POLARIS

Scaling efficiency is dominated by the conjugate gradient algorithm to solve for the secondorder parameter updates.

SCALING UP ON POLARIS

Scaling efficiency is dominated by the conjugate gradient algorithm to solve for the secondorder parameter updates.

ONGOING WORK

- § We continue to develop these techniques with the aim of solving bigger and bigger systems.
 - We intend to solve the Calcium nucleus on Polaris this year.
- § With Aurora, we will be able to solve nuclei near A=100.
 - Biggest challenge will be ensuring the inversion of the matrix S_{ij} does not become a bottleneck at scales beyond 1000 ranks.
- § We are also looking into applying these same techniques to different Hamiltonians, namely molecules.

THANK YOU!

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

CENTRAL LIMIT ESTIMATES

§ Let P(x) be a probability distribution, and $(x_1, ..., x_N)$ be drawn from P(x). For the function f(x), you can define a new random variable:

$$S_N = \frac{1}{N} \sum_{i=1}^N f(x_i)$$

§ By the central limit theorem:

$$\bar{S}_N = \int dx P(x) f(x) \quad \sigma_N = \sqrt{\frac{1}{N} \left[\int P(x) f(x)^2 dx - \bar{S}_N \right]}$$

$$I = \int dx f(x) = \int dx P(x) \frac{f(x)}{P(x)}$$

VARIATIONAL MEASUREMENTS

§ The integral to estimate the energy of a trial wavefunction is:

$$E_T = \frac{\langle \psi_T | H | \psi_T \rangle}{\langle \psi_T | \psi_T \rangle} = \frac{\int dR \langle \psi_T | R \rangle \langle R | H | \psi_T \rangle}{\int dR \langle \psi_T | R \rangle \langle R | \psi_T \rangle}$$

$$H_{\psi_T}(R)$$

§ Define a quantity $E_L(R)$: $E_L(R) \equiv \frac{H\psi_T(R)}{\psi_T(R)}$

$$E_T = \frac{\int dR |\psi_T(R)|^2 E_L(R)}{\int dR |\psi_T(R)|^2}$$

TRIAL ENERGY ESTIMATE

§ Numerically approximate the integral by sampling R from the probability distribution P(R):

$$P(R) = \frac{|\psi(R)|^2}{\int dR |\psi_T(R)|^2} \qquad \langle E_T \rangle = \frac{1}{N} \sum_n E_L(R_n)$$

§ And, the integration error can be estimated just as easily:

$$\langle E_T^2 \rangle = \frac{1}{N} \sum_n E_L^2(R_n) \qquad \qquad E_L(R) \equiv \frac{H\psi_T(R)}{\psi_T(R)}$$

PRACTICAL CONSIDERATIONS

§ The $M(RT)^2$ algorithm has some nice properties:

- We can sample nearly any function;
- It is numerically and analytically fairly simple;
- It is easily parallelized up to however many configurations we want
- § Also: The $M(RT)^2$ algorithm has some unfortunate convergence properties:
 - It takes a large number of steps to converge to the target distribution, especially initially.
 - Subsequent samples are often frequently correlated with each other, requiring intermediate steps to re-thermalize.
 - Discarding sampled configurations initially and with each re-thermalization is quite wasteful.

ENERGY MINIMIZATION

§ Recall the wavefunction, and the values we must compute:

$$\psi_T = \psi_T(R, \vec{\theta}) \qquad E_L(R) \equiv \frac{H\psi_T(R)}{\psi_T(R)}$$

§So,

$$\frac{\partial \langle E_T \rangle}{\partial \theta_i} = 2 \left(\frac{\langle \partial_i \psi_T | H | \psi_T \rangle}{\langle \psi_T | \psi_T \rangle} - E_T \frac{\langle \partial_i \psi_T | \psi_T \rangle}{\langle \psi_T | \psi_T \rangle} \right)$$

§ Define:

$$O^{i}\psi_{T}(R,\vec{\theta}) \equiv \frac{\partial}{\partial\theta_{i}}\psi_{T}(R,\vec{\theta}) \qquad G^{i} \equiv \frac{\partial\langle E_{T}\rangle}{\partial\theta_{i}} = 2\left(\langle O^{i}H\rangle - \langle E_{T}\rangle\langle O^{i}\rangle\right)$$

CALCULUS INTERLUDE

§ So far, we've encountered a number of derivatives:

- The Hamiltonian operator requires a second derivative to compute the energy of the trial model, as a function of the inputs.
- The Gradient Calculation requires derivatives of the trial model as a function of the parameters.
- § We can either figure out these derivates analytically (hard), numerically (slow), or leverage a machine learning framework that has automatic differentiation.
 – Which one?
- § In short: represent our "trial wavefunction" with a machine learning neural network.

