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INTRODUCTION
Why nuclear physics?

Atomic Nuclei are many-body systems governed by the strong interaction, which exhibit emergent properties such
as: shell structure, pairing and superfluidity, deformation, and self-emerging clusters.
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NUCLEAR MANY BODY PHYSICS

At low energies, the quarks and gluons are confined within the hadrons: protons, neutrons and pions.
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We can approximate QCD through effective field theories, allowing us to compute observables
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PION-LESS NUCLEAR HAMILTONIAN
An Effective Field Theory with 2- and 3- body interactions

v12 = C1va(r12) + Covp(r12)012 | v123 = Do Z vA(T12)vA(T13)
; cyc
C, and C, fit to nucleon-nucleon ! D, fixed with the binding energy of
scattering data 160
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THE NUCLEAR MANY-BODY PROBLEM

§ The non-relativistic many body theory is solving the Schrodinger equation:

H,(R) = Exn (R) R=(Z1,81,2T1,2---)
H=V(R) - %V

§ The exact solution of this is exponentially hard.

§ The methods described in this talk solve this equation approximately, and while we
target Nuclear many-body systems it is broadly applicable to many-body quantum
systems.
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VARIATIONAL MONTE CARLO

§ The Variational Principle of Quantum Mechanics guarantees that for any variational state, the
expectation of the energy of that wavefunction is greater than the ground state:

- H
vr=vr(R0)  Er="gaggt > B

§ Trial wavefunctions are parametrized in some way, and so you may optimize the trial
wavefunction to reduce the expectation of the energy.

. 0
min(Er) : 0; — 0; — n%ET
J

§ Ultimately, the lowest energy found represents the best approximation of the ground state.
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COMPUTING EXPECTATION VALUES

§ The trial wavefunction, in just one dimension, is simple to compute numerically. But with
many-body problems in 3 dimensions, the number of dimensions in the integral scales as
3XNparticIes-

n [ dr¥s (r,0) HU 7 (r,0)
L [ dr v (r,0) U (r,0)

r=(r1,73,...TN)

§ Sampling this integral in a dense or even adaptive way is computationally very very hard!
§ The central limit theorem provides a way to approximate this multi-dimensional integral.
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M(RT)2 SAMPLING

§ We can compute the energy for any trial
wavefunction as long as we sample x; from the
probability distribution P(X;).

§ The M(RT)?2 algorithm* provides a technique to
sample from any arbitrary probability distribution
under general conditions.

§ Referring to each collection of nucleons as a
“walker,” compute the observables with N total
walkers

§ This algorithm performs a walk in both Cartesian

coordinates AND spin/isospin.
*named for N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller

—8—=8—80—0—80—0— Initial Distribution
VN

i
=== == ===~ @ Random Gaussian Move
\

! /
—9—90—0—900—8— Accept/Reject
/

----- 2--00--0----89 ---- Random Gaussian Move

-
*—l

—8—98—900—0—90— Accept/Reject

[T (x)[® ...Iterate until converged!

https://github.com/Nuclear-Physics-with-Machine-
Learning/Al4NP_School/blob/main/LecturessMLNP_school_|.pdf
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https://github.com/Nuclear-Physics-with-Machine-Learning/AI4NP_School/blob/main/Lectures/MLNP_school_I.pdf

ANTI-SYMMETRY

§ A wavefunction of many fermions must be anti-symmetric under the exchange of any
two particles. We enforce this directly in the network with the Slater determinant, in
combination with a fully-symmetric DeepSets based correlator (U)

(T1|C1)  (z2|C1) .. (zN|C1)
(@1lG2) (z2lC) - (zwlGe) _ (<$1|Rlp 1) (z2|Rip T>>
(z1|Ran 1) (z2|Ran 1)

S = . . . Sdeuteron —
(Z1lCn)  (z2lCn) - (@n|Cw) X; is a generalized coordinate of spatial
position, spin, and isospin.

1Gi) = |Ri) |s:) [7:)
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NEURAL NETWORK QUANTUM STATES

§ In general, we need a wavefunction of the form (S is matrix):

(7, . Fy) = eV det(S)

§ In practice, we enforce full symmetry of the correlator under exchange of particles using
the DeepSets formalism:

U(r1,...,Ta) = pu (Z%(ﬂ)) ¢,p=ANN

§ Each particle’s location is mapped to a latent space, and the latent space of all particles is
summed to destroy individual interactions, then mapped to a single value.
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ENCODING CORRELATIONS

§ We can enhance the encoding of particle-to-particle correlations with Message Passing
Graph Neural Networks -maintaining .

T We replace the inputs to the
gl Slater determinant and
h """" i —— correlator with the output of
L : il 55 the message passing graph

p = D [ [ . neural network.

Ll il =9 This approaches a universal

"""" approximator as the

R variational state.
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NEURAL NETWORK PHYSICALITY

§ The neural network implementation must also obey physical constraints: must be twice
differentiable, continuous in the first derivative, and for a bound state must go to O at

infinity.

§ In practice, we enforce this with select activation functions (yes to tanh/sigmoid, no to
ReLU!). A correlator function U is also augmented with a confinement term (goes to 0 at
infinity):

U7, ...,7a) = pu (Z %(ﬁ-)) —ay
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STOCHASTIC RECONFIGURATION

§ The gradients computed above can be improved via “Stochastic Reconfiguration”
— https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.241103

Smn — <Om0n> <Om> <On> Sl’;u,le = (SR -I-]IG)_]

§ Effectively, this flattens the space of optimization and is a 2nd order approach

"ZSReae

§ But, this requires the jacobian matrix of the network!

\ Laboratovy isa
ENERGY of Energy Iaboratory 13
nnnnnnnnnnnnnnnnnnnnnnnnnnnnn

AAAAAAAAAAAAAAAAAA


https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.241103

ALGORITHM SUMMARY 1

§ For a trial wavefunction, create sets of N,akers t0 USE
for a numerical integration.

§ Thermalize the walkers for Ny, iterations at the
start; between each measurement use N,,iq Steps to
remove correlations in measurements.

§ For each set of thermalized, de-correlated walkers,
compute the observable properties:
— E5, it’s variational derivatives, the
reconfiguration matrix S;;.

5%, u.s. DEPARTMENT OF _ Argonne National Laboratory is a
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ALGORITHM SUMMARY 2

§ Accumulate the observables for N
iterations;

Thermalize O(5000) steps

.0 (ET> - - Measurement of G, S, Update &
G' = = ((OZH> — (E7) (Oz>)
00; De-correlate O(500) steps
Smn _ (OmO" O™ (O Measurement of G, S, Update &
< ) —{0™){0") De-correlate O(500) steps
§ Update the wave function according to Measurement of G, S, Update &
the accumulated observables and the _
update rule: ...Until Convergence
—n Z SR : 89 De-correlate O(500) steps
Measurement of G, S, Update &
@RSy v 15 Argonne &




COMPUTATIONAL EFFICIENCY

§ This algorithm can (and has been) implemented in there DL frameworks (TF, Torch, Jax).
Jax is the clear winner for computational efficiency.

§ Torch is imperative: the ”walk” algorithm is too slow, and makes terrible use of the GPU.
— LibTorch is better, but has concurrency issues when computing the Jacobian matrix.
— Generally torch is great when each GPU op is Big. It falls over when there are many
many small ops.

§ Tensorflow is better, but it’s graph compilation stage can be tedious and detrimental to
start-up times as the problem size scales up.
— Has excellent scaling properties, though!
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COMPUTATIONAL EFFICIENCY (2)

§ The non-traditional derivatives of this algorithm also are a challenge:
— Need first and second derivative with respect to input variables
— Need a jacobian with respect to model parameters
— No simple vectorization and poor performance with both TF (jacobian) and Torch
(both!)

§ Jax offers a solution to all of this:
— Easy to compile the many-small-ops Metropolis algorithm
— Easy to vectorize the gradient of the wavefunction over all parameters (Jacobian)
— Easy to vectorize the 2nd derivatives.

§ In short: if you have a “weird” algorithm using machine learning, Jax is awesome.

%%, U.S. DEPARTMENT OF  Argonne National Laboratory is a
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SOLVING THE DEUTERON

—2.100

—2.125

N

-2.150

-2.175

=

—2.200

—2.250

o

=2.275

Energy [MeV]

—2.300

200 250 300 350 400 450 500

|
=

0 100 200 300 400 50!

SR [teration

tional Laboratory is a
ment of Energy laboratory 18 A
y UChicago Argonne, LLC. I On ne

NATIONAL LABORATORY




NUCLEI UP TO A=6

ANN HH Exp.
E(MeV) rep(fm)  E(MeV) rep (fm) E(MeV)  re, (fm)

Nucleus Potential

2H NN —2.242(1)  2.120(5)  —2.242 2.110(2) —2.225  2.128
Ho N T8om) 1o _sats  Loa(s) 4TS L755(36)
®He  uy el el e Dess 08 L
e AN ovoosl) lome)  _oels lomea) 2830 1678
CHe AN orang) Sisah _oris Sag 220 205(1)
i Y OO Gihe CainE moh —oles  254@

Table 1 from https://link.springer.com/article/10.1007/s00601-021-01706-0
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https://link.springer.com/article/10.1007/s00601-021-01706-0

CONVERGENCE OF HELIUM

— GFMC
1.21 ¢ ANN
10 10-2<
= 0.8 o]
E
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Figure 2 from https://journals.aps.org/prl/abstract/10.1103/PhysRevLl ett.127.022502

20

The point-nucleon
density of 4He
compared to the
classical, Green’s
field Monte Carlo
Technigue —accurate
over 4 orders of
magnitude.
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SCALING TO LARGER NUCLEI

JAX-QMC Node=1 GPU=1

o i T TR As the number of walkers
STEmT I e e e T 1 increases, both
7 computational time and

’ il memory usage increases.
v The only solution to reach
" st larger nuclei is to

" s parallelize the algorithm.

RS
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SCALING TO LARGER NUCLEI

Time/lteration

JAX-QMC Node=1 GPU=1

— avg_wélk — évg_obs :
B avg jac EE avg_norm

0 2 4 6 8 10 12 14
n_walkers/GPU

22

As the number of walkers
increases, both
computational time and
memory usage increases.

The only solution to reach

larger nuclei is to
parallelize the algorithm.
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PARALLELIZATION STRATEGY

Initialize All “Walkers” (N,,), Parameters & Ng ranks,

k to 2k-1

ISR K = Nuw/Ne walkers
per rank

Thermalize Thermalize

Thermalize

G is the 1st order

Measure G
parameter updates

Measure G Measure G

Compute global observables (Jacobian wrt Inputs, S)

SolveSdé =G !\/Iultlple options for
Inverting S

Update & Update & Update &

De-correlate

De-correlate

De-correlate

U.S. DEPARTMENT OF _ Argonne National Laboratory is a
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SCALING UP ON POLARIS

° mm walk normalization
Bl observables B metrics
4 Bl jacobian B optimizer . Scaling efﬁCiency
— e e e s B B . Is dominated by
_3 the conjugate
2 gradient
2P algorithm to solve
for the second-
" order parameter
updates.
& 4 8 16 32 64 128 256 512 1024
Ranks [#A100]
(@ ENERGY S5 5 ey

AAAAAAAAAAAAAAAAAA



SCALING UP ON POLARIS

1.2

=
o

I— Scaling efficiency
Is dominated by
the conjugate
gradient
algorithm to solve
for the second-
order parameter
updates.

=
o

e
NN

Weak Scaling Efficiency
o
(@)]

=
()

0.0
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Ranks [#A100]
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ONGOING WORK

§ We continue to develop these techniques with the aim of solving bigger and bigger
systems.
— We intend to solve the Calcium nucleus on Polaris this year.

§ With Aurora, we will be able to solve nuclei near A=100.
— Biggest challenge will be ensuring the inversion of the matrix S;; does not become a
bottleneck at scales beyond 1000 ranks.

§ We are also looking into applying these same techniques to different Hamiltonians,
namely molecules.

%%, U.S. DEPARTMENT OF  Argonne National Laboratory is a
US. Department of Energy laboratory 26 A
ENERGY [ sn rgonne

nnnnnnnnnnnnnnnnnn



THANK YOU!

, U.S. DEPARTMENT OF _ Argonne National Laboratory is a
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CENTRAL LIMIT ESTIMATES

§ Let P(x) be a probability distribution, and (X, ... Xy) be drawn from P(x). For the
function f(x), you can define a new random variable:

LN
Sn =+ Zf(l‘z)
i=1

§ By the central limit theorem:

SN = / deP(x)f(x) on= \/;] [/P(w)f(a:)%x — Sy

I = / drf(r) = / dzP(z) ]J; Ei))

5%, u.s. DEPARTMENT OF _ Argonne National Laboratory is a
407 ENERGY U.S. Department of Energy laboratory 28
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VARIATIONAL MEASUREMENTS

§ The integral to estimate the energy of a trial wavefunction is:

(r| Hbr) [ dR(Pr|R) (R|H[Yr)

D— —
Y (Wrlyr) [dR (Y| R) (R¥r)
. . _ Hyr(R)
Def tity E, (R): Er(R) =
§ Define a quantity E, (R) L(R) or(R)
g _ JARWr(R)PEL(R)
| dRlYr(R))|?
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TRIAL ENERGY ESTIMATE

§ Numerically approximate the integral by sampling R from the probability distribution
P(R):

PR = o T (Br) = 2 Bulh

§ And, the integration error can be estimated just as easily:

30 Argonne &
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PRACTICAL CONSIDERATIONS

§ The M(RT)2algorithm has some nice properties:
— We can sample nearly any function;
— It is numerically and analytically fairly simple;
— It is easily parallelized up to however many configurations we want

§ Also: The M(RT)2algorithm has some unfortunate convergence properties:
— It takes a large number of steps to converge to the target distribution, especially
initially.
— Subsequent samples are often frequently correlated with each other, requiring
intermediate steps to re-thermalize.
— Discarding sampled configurations initially and with each re-thermalization is quite
wasteful.
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ENERGY MINIMIZATION

§ Recall the wavefunction, and the values we must compute:

5 H R
VY = Yr(R,0) Er(R) = #2))
§ So,
O(Er) (O H [Yr) . (Oir[dr)
o0 2< Wrlor) O (rlir) )
§ Define:
N 0 N ) 0(E ) i
Opr(RD) = rur(RA) G = T < 2((0) ~ (Br) (O)

rrrrrrrrrrr
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CALCULUS INTERLUDE

§ So far, we’ve encountered a number of derivatives:
— The Hamiltonian operator requires a second derivative to compute the energy of the
trial model, as a function of the inputs.
— The Gradient Calculation requires derivatives of the trial model as a function of the

parameters.

§ We can either figure out these derivates analytically (hard), numerically (slow), or
leverage a machine learning framework that has automatic differentiation.
— Which one?

§ In short: represent our “trial wavefunction” with a machine learning neural network.
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