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INTRODUCTION
Why nuclear physics?
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Atomic Nuclei are many-body systems governed by the strong interaction, which exhibit emergent properties such 
as: shell structure, pairing and superfluidity, deformation, and self-emerging clusters.

Understanding how the properties of nuclei emerge from QCD is a long-standing goal of nuclear physics.



NUCLEAR MANY BODY PHYSICS
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At low energies, the quarks and gluons are confined within the hadrons: protons, neutrons and pions.

We can approximate QCD through effective field theories, allowing us to compute observables



PION-LESS NUCLEAR HAMILTONIAN
An Effective Field Theory with 2- and 3- body interactions
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C1 and C2 fit to nucleon-nucleon 
scattering data

D0 fixed with the binding energy of 
16O



THE NUCLEAR MANY-BODY PROBLEM

§ The non-relativistic many body theory is solving the Schrodinger equation:

§ The exact solution of this is exponentially hard.

§ The methods described in this talk solve this equation approximately, and while we 
target Nuclear many-body systems it is broadly applicable to many-body quantum 
systems.
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VARIATIONAL MONTE CARLO

§ The Variational Principle of Quantum Mechanics guarantees that for any variational state, the 
expectation of the energy of that wavefunction is greater than the ground state:

§ Trial wavefunctions are parametrized in some way, and so you may optimize the trial 
wavefunction to reduce the expectation of the energy.

§ Ultimately, the lowest energy found represents the best approximation of the ground state.
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COMPUTING EXPECTATION VALUES

§ The trial wavefunction, in just one dimension, is simple to compute numerically.  But with 
many-body problems in 3 dimensions, the number of dimensions in the integral scales as 
3xNparticles.

§ Sampling this integral in a dense or even adaptive way is computationally very very hard!

§ The central limit theorem provides a way to approximate this multi-dimensional integral.
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M(RT)2 SAMPLING

§ We can compute the energy for any trial 
wavefunction as long as we sample xi from the 
probability distribution P(xi).

§ The M(RT)2 algorithm* provides a technique to 
sample from any arbitrary probability distribution 
under general conditions.

§ Referring to each collection of nucleons as a 
“walker,” compute the observables with N total 
walkers

§ This algorithm performs a walk in both Cartesian 
coordinates AND spin/isospin.

*named for N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller
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https://github.com/Nuclear-Physics-with-Machine-
Learning/AI4NP_School/blob/main/Lectures/MLNP_school_I.pdf 

Initial Distribution

Random Gaussian Move

Accept/Reject

Random Gaussian Move

Accept/Reject

…Iterate until converged!

https://github.com/Nuclear-Physics-with-Machine-Learning/AI4NP_School/blob/main/Lectures/MLNP_school_I.pdf


ANTI-SYMMETRY

§ A wavefunction of many fermions must be anti-symmetric under the exchange of any 
two particles.  We enforce this directly in the network with the Slater determinant, in 
combination with a fully-symmetric DeepSets based correlator (U)
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xi is a generalized coordinate of spatial 
position, spin, and isospin.



NEURAL NETWORK QUANTUM STATES

§ In general, we need a wavefunction of the form (S is matrix):

§ In practice, we enforce full symmetry of the correlator under exchange of particles using 
the DeepSets formalism:

§ Each particle’s location is mapped to a latent space, and the latent space of all particles is 
summed to destroy individual interactions, then mapped to a single value.
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ENCODING CORRELATIONS

§ We can enhance the encoding of particle-to-particle correlations with Message Passing 
Graph Neural Networks -maintaining .
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We replace the inputs to the 
Slater determinant and 
correlator with the output of 
the message passing graph 
neural network.

This approaches a universal 
approximator as the 
variational state.



NEURAL NETWORK PHYSICALITY

§ The neural network implementation must also obey physical constraints: must be twice 
differentiable, continuous in the first derivative, and for a bound state must go to 0 at 
infinity.

§ In practice, we enforce this with select activation functions (yes to tanh/sigmoid, no to 
ReLU!). A correlator function U is also augmented with a confinement term (goes to 0 at 
infinity):
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STOCHASTIC RECONFIGURATION

§ The gradients computed above can be improved via “Stochastic Reconfiguration”
– https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.241103

 

§ Effectively, this flattens the space of optimization and is a 2nd order approach

§ But, this requires the jacobian matrix of the network!
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https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.241103


ALGORITHM SUMMARY 1

§ For a trial wavefunction, create sets of Nwalkers to use 
for a numerical integration.

§ Thermalize the walkers for Ntherm iterations at the 
start; between each measurement use Nvoid steps to 
remove correlations in measurements.

§ For each set of thermalized, de-correlated walkers, 
compute the observable properties:
– ET, it’s variational derivatives, the 

reconfiguration matrix Sij.
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ALGORITHM SUMMARY 2

§ Accumulate the observables for Nobs 
iterations; 

§ Update the wave function according to 
the accumulated observables and the 
update rule:
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Thermalize O(5000) steps

Measurement of G, S, Update θ

De-correlate O(500) steps
Measurement of G, S, Update θ

De-correlate O(500) steps
Measurement of G, S, Update θ

De-correlate O(500) steps
Measurement of G, S, Update θ

…Until Convergence



COMPUTATIONAL EFFICIENCY

§ This algorithm can (and has been) implemented in there DL frameworks (TF, Torch, Jax).  
Jax is the clear winner for computational efficiency.

§ Torch is imperative: the ”walk” algorithm is too slow, and makes terrible use of the GPU.
– LibTorch is better, but has concurrency issues when computing the Jacobian matrix.
– Generally torch is great when each GPU op is Big.  It falls over when there are many 

many small ops.

§ Tensorflow is better, but it’s graph compilation stage can be tedious and detrimental to 
start-up times as the problem size scales up.
– Has excellent scaling properties, though!
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COMPUTATIONAL EFFICIENCY (2)

§ The non-traditional derivatives of this algorithm also are a challenge:
– Need first and second derivative with respect to input variables
– Need a jacobian with respect to model parameters
– No simple vectorization and poor performance with both TF (jacobian) and Torch 

(both!)

§ Jax offers a solution to all of this:
– Easy to compile the many-small-ops Metropolis algorithm
– Easy to vectorize the gradient of the wavefunction over all parameters (Jacobian)
– Easy to vectorize the 2nd derivatives.

§ In short: if you have a “weird” algorithm using machine learning, Jax is awesome.
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SOLVING THE DEUTERON
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NUCLEI UP TO A=6

19

Table 1 from https://link.springer.com/article/10.1007/s00601-021-01706-0 

https://link.springer.com/article/10.1007/s00601-021-01706-0


CONVERGENCE OF HELIUM
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Figure 2 from https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502 

The point-nucleon 
density of 4He 
compared to the 
classical, Green’s 
field Monte Carlo 
Technique –accurate 
over 4 orders of 
magnitude.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502


SCALING TO LARGER NUCLEI
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As the number of walkers 
increases, both 
computational time and 
memory usage increases.

The only solution to reach 
larger nuclei is to 
parallelize the algorithm.



SCALING TO LARGER NUCLEI
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As the number of walkers 
increases, both 
computational time and 
memory usage increases.

The only solution to reach 
larger nuclei is to 
parallelize the algorithm.



PARALLELIZATION STRATEGY

Thermalize

Measure G

De-correlate

Update θ

Thermalize Thermalize....

Initialize All “Walkers” (Nw), Parameters θ NR ranks,
k = NW/NR walkers 
per rank

0 to k-1 k to 2k-1 .... ... to NW-1

G is the 1st order 
parameter updates

Compute global observables (Jacobian wrt Inputs, S)  

Solve S dθ = G

Measure G Measure G

Multiple options for 
inverting S

De-correlate De-correlate

....

....

Update θUpdate θ ....



SCALING UP ON POLARIS

Scaling efficiency 
is dominated by 

the conjugate 
gradient 

algorithm to solve 
for the second-
order parameter 

updates.



SCALING UP ON POLARIS

Scaling efficiency 
is dominated by 

the conjugate 
gradient 

algorithm to solve 
for the second-
order parameter 

updates.



ONGOING WORK

§ We continue to develop these techniques with the aim of solving bigger and bigger 
systems.
– We intend to solve the Calcium nucleus on Polaris this year.

§ With Aurora, we will be able to solve nuclei near A=100.
– Biggest challenge will be ensuring the inversion of the matrix Sij does not become a 

bottleneck at scales beyond 1000 ranks.

§ We are also looking into applying these same techniques to different Hamiltonians, 
namely molecules.
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THANK YOU!



CENTRAL LIMIT ESTIMATES

§ Let P(x) be a probability distribution, and (x1, … xN) be drawn from P(x).  For the 
function f(x), you can define a new random variable:

§ By the central limit theorem:
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VARIATIONAL MEASUREMENTS

§ The integral to estimate the energy of a trial wavefunction is:

§ Define a quantity EL(R):
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TRIAL ENERGY ESTIMATE

§ Numerically approximate the integral by sampling R from the probability distribution 
P(R):

§ And, the integration error can be estimated just as easily:
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PRACTICAL CONSIDERATIONS

§ The M(RT)2 algorithm has some nice properties:
– We can sample nearly any function;
– It is numerically and analytically fairly simple;
– It is easily parallelized up to however many configurations we want

§ Also: The M(RT)2 algorithm has some unfortunate convergence properties:
– It takes a large number of steps to converge to the target distribution, especially 

initially.
– Subsequent samples are often frequently correlated with each other, requiring 

intermediate steps to re-thermalize.
– Discarding sampled configurations initially and with each re-thermalization is quite 

wasteful.
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ENERGY MINIMIZATION

§ Recall the wavefunction, and the values we must compute:

§ So,

§ Define:
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CALCULUS INTERLUDE

§ So far, we’ve encountered a number of derivatives:
– The Hamiltonian operator requires a second derivative to compute the energy of the 

trial model, as a function of the inputs.
– The Gradient Calculation requires derivatives of the trial model as a function of the 

parameters.

§ We can either figure out these derivates analytically (hard), numerically (slow), or 
leverage a machine learning framework that has automatic differentiation.
– Which one?

§ In short: represent our “trial wavefunction” with a machine learning neural network.
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