
File Systems and Sharing
Shane Snyder
Argonne National Laboratory

ALCF Hands-on HPC Workshop, Day 3
October 12, 2023

Argonne Leadership Computing Facility2

Managing scientific data

HPC applications spanning various scientific disciplines
have a range of diverse data management needs
○ Explosion of scientific data (both in terms of volume and

in diversity of access patterns) is compounding the I/O
bottleneck, a longstanding performance impediment on
HPC systems

Meanwhile, hardware trends have enabled novel,
high-performance storage system designs that promise
increased productivity to HPC apps

ALCF and other HPC facilities deploy vast amounts of
storage resources to help meet the I/O needs of HPC
applications
○ Today, we’ll introduce the basics of the HPC data

managements stack at ALCF and try to establish some
best practices for using it effectively

Visualization of entropy in Terascale
Supernova Initiative application.

Image from Kwan-Liu Ma’s
visualization team at UC Davis.

HPE/Cray Aurora system at the ALCF

Argonne Leadership Computing Facility3

Parallel file systems (PFSes) have long been offered
by HPC facilities as a general-purpose tool for
persisting users’ data
○ Users store data in a familiar file/directory hierarchy, but

with much more aggregate capacity and performance
relative to a local FS

PFSes offer a number of attractive characteristics that
have led to their widespread usage in HPC:
○ High performance - parallel I/O paths enable

aggregate performance of many storage resources
using high speed interconnects

○ Scalability - storage resources can be scaled to meet
demands of current and future applications

○ Reliability - failover mechanisms to ensure availability
of data in face of failures

Popular PFSes available on modern HPC systems
include:
○ Lustre
○ GPFS (a.k.a Spectrum Scale)
○ BeeGFS

open()
write()
close()

Scientific application processes

Persistent
data sets

Parallel file systems

Argonne Leadership Computing Facility4

Parallel file systems: Lustre
Lustre is currently the preferred scratch file system in production at the ALCF (as well as at
many other large-scale HPC facilities)

Lustre’s design is centered around an object storage service and a metadata storage service
○ Metadata servers (MDSes) manage sets of metadata targets (MDTs)

– Maintain filesystem namespace and key file metadata
○ Object storage servers (OSSes) manage sets of object storage targets (OSTs)

– Provide bulk storage for file contents

Lustre clients coordinate with metadata servers
to set/query file layout, but then interact strictly
with storage servers for reading/writing data

Lustre files are broken into stripes, with file
stripes round-robin distributed over 1 or more
OSTs

OSS 1 OSS 2

OST 1 OST 2 OST 3 OST 4

1 2 3 4 5 6 7 8 9

1
2 3 4

5
6 7 8

9

Example file:

Argonne Leadership Computing Facility5

Parallel file systems: Lustre
Achieving the best performance with Lustre sometimes requires thoughtful file striping settings
○ Larger files tend to be benefit from larger stripe counts (i.e., more storage resources)

Argonne Leadership Computing Facility6

Parallel file systems: Lustre
Achieving the best performance with Lustre sometimes requires thoughtful file striping settings
○ Larger files tend to be benefit from larger stripe counts (i.e., more storage resources)

Default Lustre stripe settings may not be optimal! On ALCF systems, files
default to a stripe width of 1, meaning they are stored on a single OST.

The onus is on users to ensure stripe settings are set appropriately.

Stripe settings can be modified using the lfs tool:

lfs setstripe –S <size> -c <count> <file/dir name>

Argonne Leadership Computing Facility7

Parallel file systems: Lustre
Achieving the best performance with Lustre sometimes requires thoughtful file striping settings
○ Larger files tend to be benefit from larger stripe counts (i.e., more storage resources)

By default (on this file system), new
files/directories are set to use a stripe count of 1.

NOTE: Stripe settings applied to a directory are
inherited by all files within it.

Argonne Leadership Computing Facility8

Parallel file systems: Lustre
Achieving the best performance with Lustre sometimes requires thoughtful file striping settings
○ Larger files tend to be benefit from larger stripe counts (i.e., more storage resources)

Using the setstripe command we can override the
default striping and request more storage resources.

Argonne Leadership Computing Facility9

Parallel file systems: Lustre
Achieving the best performance with Lustre sometimes requires thoughtful file striping settings
○ Larger files tend to be benefit from larger stripe counts (i.e., more storage resources)

Recent Lustre versions have introduced a new feature called progressive file layouts (PFL) that
enables a more flexible file striping strategy
○ PFL replaces traditional static striping with a dynamic approach that increases the stripe size as the

file offset increases
○ Small files stored on a single OST, large files can grow to stripe across many OSTs

PFL not enabled by default on ALCF Lustre volumes yet, but something
to keep in mind.

PFL can provide default stripe settings that achieve reasonable
performance for a variety of I/O workloads, but knowledgeable users

can still achieve the best performance by thoughtful tuning of striping.

Argonne Leadership Computing Facility10

ALCF Polaris file systems
ALCF offers a number of file systems to Polaris users:
○ Grand (Lustre)

– Temporary storage of I/O intensive data
– 100 PB aggregate capacity, 650 GB/sec transfer rate
– 160 OSTs, 40 MDTs

○ Eagle (Lustre)
– Temporary storage of I/O intensive data
– Community sharing with Globus (more later)
– 100 PB aggregate capacity, 650 GB/sec transfer rate
– 160 OSTs, 40 MDTs

○ Home (Lustre)
– General-purpose storage of data that is not I/O-intensive

(e.g., binaries, source code, etc.)
– Regular backups to tape

○ Node local storage (XFS)
– Temporary, compute node-local storage for jobs
– 2 SSDs with total capacity of 3.2 TB
– Users must copy data somewhere persistent at job end

Argonne Leadership Computing Facility11

ALCF Polaris file systems
ALCF offers a number of file systems to Polaris users:
○ Grand (Lustre)

– Temporary storage of I/O intensive data
– 100 PB aggregate capacity, 650 GB/sec transfer rate
– 160 OSTs, 40 MDTs

○ Eagle (Lustre)
– Temporary storage of I/O intensive data
– Community sharing with Globus (more later)
– 100 PB aggregate capacity, 650 GB/sec transfer rate
– 160 OSTs, 40 MDTs

○ Home (Lustre)
– General-purpose storage of data that is not I/O-intensive

(e.g., binaries, source code, etc.)
– Regular backups to tape

○ Node local storage (XFS)
– Temporary, compute node-local storage for jobs
– 2 SSDs with total capacity of 3.2 TB
– Users must copy data somewhere persistent at job end

Users should always carefully
consider whether their usage of
production storage resources
matches their intended use.

➢ Maximize app performance
➢ Maximize system efficiency
➢ Ensure data integrity

Argonne Leadership Computing Facility12

I/O libraries: interacting with file systems
HPC apps, of course, need an interface to interact with file systems and manage their data
○ Most file systems (including PFSes) expose a POSIX-like interface that should be familiar to many

programmers

POSIX (Portable Operating System Interface)
○ Standard interfaces for portably interacting with file systems, e.g.:

– open(), read(), lseek(), close() operations
○ Semantics guaranteed by each operation, e.g.:

– successful writes to a file must be immediately visible to subsequent reads

Argonne Leadership Computing Facility13

I/O libraries: interacting with file systems
HPC apps, of course, need an interface to interact with file systems and manage their data
○ Most file systems (including PFSes) expose a POSIX-like interface that should be familiar to many

programmers

POSIX (Portable Operating System Interface)
○ Standard interfaces for portably interacting with file systems, e.g.:

– open(), read(), lseek(), close() operations
○ Semantics guaranteed by each operation, e.g.:

– successful writes to a file must be immediately visible to subsequent reads

This semantic is tricky to enforce for
PFSes where potentially hundred of

thousands of clients collectively access
and cache file contents.

Argonne Leadership Computing Facility14

I/O libraries: interacting with file systems
HPC apps, of course, need an interface to interact with file systems and manage their data
○ Most file systems (including PFSes) expose a POSIX-like interface that should be familiar to many

programmers

POSIX (Portable Operating System Interface)
○ Standard interfaces for portably interacting with file systems, e.g.:

– open(), read(), lseek(), close() operations
○ Semantics guaranteed by each operation, e.g.:

– successful writes to a file must be immediately visible to subsequent reads

POSIX was never designed or necessarily intended for the large-scale parallel file access
○ Inflexible, strong consistency requirements often lead PFSes to implement elaborate locking

protocols or to eschew strong consistency entirely

Argonne Leadership Computing Facility15

I/O libraries: interacting with file systems
HPC apps, of course, need an interface to interact with file systems and manage their data
○ Most file systems (including PFSes) expose a POSIX-like interface that should be familiar to many

programmers

POSIX (Portable Operating System Interface)
○ Standard interfaces for portably interacting with file systems, e.g.:

– open(), read(), lseek(), close() operations
○ Semantics guaranteed by each operation, e.g.:

– successful writes to a file must be immediately visible to subsequent reads

POSIX was never designed or necessarily intended for the large-scale parallel file access
○ Inflexible, strong consistency requirements often lead PFSes to implement elaborate locking

protocols or to eschew strong consistency entirely

To avoid performance or consistency issues, best practice in the HPC community
typically involves avoiding concurrent access of overlapping regions of a file.

However, “false sharing” can still lead to performance inefficiencies.

Argonne Leadership Computing Facility16

I/O libraries: parallel I/O capabilities
The MPI-IO interface was designed to help address needs for parallel I/O support by HPC apps
○ Allow MPI programs to read/write data using various parallel I/O strategies (e.g., single shared file)

MPI is actually an attractive environment for providing parallel I/O support:
○ Collective operations enabling all processes to participate in some task (e.g., reading/writing)
○ MPI datatypes support for describing layout of data in both memory and file

MPI-IO offers numerous I/O capabilities, allowing flexible and performant I/O strategies:
○ Independent operations
○ Collective operations
○ Non-blocking operations
○ Optimizations

– General and system-specific

Argonne Leadership Computing Facility17

The MPI-IO interface was designed to help address needs for parallel I/O support by HPC apps
○ Allow MPI programs to read/write data using various parallel I/O strategies (e.g., single shared file)

MPI is actually an attractive environment for providing parallel I/O support:
○ Collective operations enabling all processes to participate in some task (e.g., reading/writing)
○ MPI datatypes support for describing layout of data in both memory and file

MPI-IO offers numerous I/O capabilities, allowing flexible and performant I/O strategies:
○ Independent operations
○ Collective operations
○ Non-blocking operations
○ Optimizations

– General and system-specific

I/O libraries: parallel I/O capabilities

Argonne Leadership Computing Facility18

The MPI-IO interface was designed to help address needs for parallel I/O support by HPC apps
○ Allow MPI programs to read/write data using various parallel I/O strategies (e.g., single shared file)

MPI is actually an attractive environment for providing parallel I/O support:
○ Collective operations enabling all processes to participate in some task (e.g., reading/writing)
○ MPI datatypes support for describing layout of data in both memory and file

MPI-IO offers numerous I/O capabilities, allowing flexible and performant I/O strategies:
○ Independent operations
○ Collective operations
○ Non-blocking operations
○ Optimizations

– General and system-specific

I/O libraries: parallel I/O capabilities

Argonne Leadership Computing Facility19

I/O libraries: parallel I/O capabilities
The MPI-IO interface was designed to help address needs for parallel I/O support by HPC apps
○ Allow MPI programs to read/write data using various parallel I/O strategies (e.g., single shared file)

MPI is actually an attractive environment for providing parallel I/O support:
○ Collective operations enabling all processes to participate in some task (e.g., reading/writing)
○ MPI datatypes support for describing layout of data in both memory and file

MPI-IO offers numerous I/O capabilities, allowing flexible and performant I/O strategies:
○ Independent operations
○ Collective operations
○ Non-blocking operations
○ Optimizations

– General and system-specific
Initial state Phase 1: I/O Phase 2: Redistribution

Two-phase collective I/O algorithm

Argonne Leadership Computing Facility20

The MPI-IO interface was designed to help address needs for parallel I/O support by HPC apps
○ Allow MPI programs to read/write data using various parallel I/O strategies (e.g., single shared file)

MPI is actually an attractive environment for providing parallel I/O support:
○ Collective operations enabling all processes to participate in some task (e.g., reading/writing)
○ MPI datatypes support for describing layout of data in both memory and file

MPI-IO offers numerous I/O capabilities, allowing flexible and performant I/O strategies:
○ Independent operations
○ Collective operations
○ Non-blocking operations
○ Optimizations

– General and system-specific

I/O libraries: parallel I/O capabilities

More on MPI-IO this afternoon in
Breakout Session 1 (Rob Latham, ANL)

Argonne Leadership Computing Facility21

I/O libraries: scientific data management abstractions
MPI-IO is a step in the right direction, but application
scientists often prefer richer data management
abstractions than simple files
○ Storing independent data products in unique files or

manually serializing collections of data products into a
single file is often untenable

HDF5 is a popular data management library and file
format that specializes in storing large amounts of
scientific data
○ Enables storage of multi-dimensional datasets, attributes,

etc. in an HDF5 file (more like a “container”)
○ Interfaces allow for access of individual dataset elements,

subarrays, or entire datasets
○ Support for collective I/O (using MPI-IO) or independent

I/O (using MPI-IO or POSIX)
○ VOL layer allows abstract implementation of storage for

HDF5 objects
– e.g., using async operations, using log-structured storage,

using an object store rather than file system

HDF5 file: chkpt001.h5

Dataset: pressure
datatype = H5T_NATIVE_DOUBLE
dataspace = (10, 30)

Attributes: …

10

30

Dataset: temperature
datatype = H5T_NATIVE_DOUBLE
dataspace = (20, 60)

Attributes: …
60

20

Argonne Leadership Computing Facility22

I/O libraries: scientific data management abstractions
MPI-IO is a step in the right direction, but application
scientists often prefer richer data management
abstractions than simple files
○ Storing independent data products in unique files or

manually serializing collections of data products into a
single file is often untenable

HDF5 is a popular data management library and file
format that specializes in storing large amounts of
scientific data
○ Enables storage of multi-dimensional datasets, attributes,

etc. in an HDF5 file (more like a “container”)
○ Interfaces allow for access of individual dataset elements,

subarrays, or entire datasets
○ Support for collective I/O (using MPI-IO) or independent

I/O (using MPI-IO or POSIX)
○ VOL layer allows abstract implementation of storage for

HDF5 objects
– e.g., using async operations, using log-structured storage,

using an object store rather than file system

More on HDF5 this afternoon
in Breakout Session 1

(Rob Latham, ANL)

Argonne Leadership Computing Facility23

Putting it all together: the HPC I/O stack

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

Parallel file system maintains
logical file model and provides
efficient access to data using a

POSIX-like interface.

Lustre, GPFS

Argonne Leadership Computing Facility24

Putting it all together: the HPC I/O stack

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations
I/O Middleware organizes and
transforms accesses from many
processes, especially those using
collective I/O.

MPI-IO Parallel file system maintains
logical file model and provides
efficient access to data using a

POSIX-like interface.

Lustre, GPFS

Argonne Leadership Computing Facility25

Putting it all together: the HPC I/O stack

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

Data Model Libraries map
application abstractions onto

storage abstractions and
provide data portability.

HDF5, Parallel netCDF,
ADIOS I/O Middleware organizes and

transforms accesses from many
processes, especially those using
collective I/O.

MPI-IO Parallel file system maintains
logical file model and provides
efficient access to data using a

POSIX-like interface.

Lustre, GPFS

Argonne Leadership Computing Facility26

Emerging storage technologies: DAOS

I/O Hardware

Application

Parallel File System
Storage services

Data Model Support

Transformations

HPC storage technology is changing to meet the
needs of diverse application workloads and to
embrace emerging storage trends

ALCF Aurora will feature Intel’s DAOS storage
system, a first-of-a-kind object-based storage
system for large-scale HPC platforms
○ Leverages both SCM and SSDs for storage

DAOS provides a range of different interfaces to
users

Argonne Leadership Computing Facility27

Emerging storage technologies: DAOS
HPC storage technology is changing to meet the
needs of diverse application workloads and to
embrace emerging storage trends

ALCF Aurora will feature Intel’s DAOS storage
system, a first-of-a-kind object-based storage
system for large-scale HPC platforms
○ Leverages both SCM and SSDs for storage

DAOS provides a range of different interfaces to
users
○ Direct usage of native DAOS object (libdaos)

interface
– Native library for directly accessing objects

(arrays or key-val stores) rather than files

Various DAOS access methods.
Figure courtesy of Intel

Argonne Leadership Computing Facility28

Emerging storage technologies: DAOS
HPC storage technology is changing to meet the
needs of diverse application workloads and to
embrace emerging storage trends

ALCF Aurora will feature Intel’s DAOS storage
system, a first-of-a-kind object-based storage
system for large-scale HPC platforms
○ Leverages both SCM and SSDs for storage

DAOS provides a range of different interfaces to
users
○ Direct usage of POSIX-like DAOS file system

(libdfs) interface
– POSIX-like file and directory abstractions

implemented over the native DAOS object
interface

Various DAOS access methods.
Figure courtesy of Intel

Argonne Leadership Computing Facility29

Emerging storage technologies: DAOS
HPC storage technology is changing to meet the
needs of diverse application workloads and to
embrace emerging storage trends

ALCF Aurora will feature Intel’s DAOS storage
system, a first-of-a-kind object-based storage
system for large-scale HPC platforms
○ Leverages both SCM and SSDs for storage

DAOS provides a range of different interfaces to
users
○ Legacy POSIX support using FUSE

– For legacy apps already using POSIX access
– No app modifications needed

Various DAOS access methods.
Figure courtesy of Intel

Argonne Leadership Computing Facility30

Tools: analyzing application I/O behavior
Application-level analysis tools are critical to
better understanding I/O behavior and
informing potential tuning decisions

Darshan is a lightweight I/O characterization
tool commonly deployed at HPC facilities,
including ALCF systems
○ Transparent, low-overhead instrumentation of

multiple layers of the HPC I/O stack
○ Detailed counters/timers/statistics for each file

accessed by the app stored in a condensed log
○ Analysis tools for inspecting and presenting key

information about I/O behavior (e.g., the
Darshan job summary tool, right)

Argonne Leadership Computing Facility31

Tools: analyzing application I/O behavior
Application-level analysis tools are critical to
better understanding I/O behavior and
informing potential tuning decisions

Darshan is a lightweight I/O characterization
tool commonly deployed at HPC facilities,
including ALCF systems
○ Transparent, low-overhead instrumentation of

multiple layers of the HPC I/O stack
○ Detailed counters/timers/statistics for each file

accessed by the app stored in a condensed log
○ Analysis tools for inspecting and presenting key

information about I/O behavior (e.g., the
Darshan job summary tool, right)

More on Darshan this afternoon in
Breakout Session 3

Argonne Leadership Computing Facility32

Other tools
There are some other notable tools that may be of use for gaining more insights into the I/O
behavior of an application:

○ Drishti: github.com/hpc-io/drishti-io
– Command-line tool transforming Darshan log data into a set of tuning recommendations based

on common HPC I/O pitfalls

○ DXT Explorer: github.com/hpc-io/dxt-explorer
– Interactive web-based trace analysis tool for Darshan DXT trace data

○ TAU: http://www.cs.uoregon.edu/research/tau/
– General call profiling/tracing toolkit for HPC applications, including I/O routines
– Tools for visualizing profiles/traces and detecting bottlenecks, etc.
– See: https://hps.vi4io.org/_media/events/2019/sc19-analyzing-tau.pdf

○ Recorder: github.com/uiuc-hpc/Recorder
– Multi-level detailed traces and corresponding trace viz tools

http://github.com/hpc-io/drishti-io
https://github.com/hpc-io/dxt-explorer
http://www.cs.uoregon.edu/research/tau/
https://hps.vi4io.org/_media/events/2019/sc19-analyzing-tau.pdf
https://github.com/uiuc-hpc/Recorder

Argonne Leadership Computing Facility33

Sharing data with collaborators
Globus is a platform for managing research data, enabling the moving, sharing, and archiving
of large volumes of data among distributed sites
○ Manages data transfers between endpoints
○ Monitors performance and errors
○ Retries and corrects errors, where possible
○ Reports status back to users

Globus can be easily accessed either using CLI tools or a web-interface

Argonne Leadership Computing Facility34

Sharing data with collaborators

More on Globus this afternoon in Breakout
Session 2 (Greg Nawrocki, University of Chicago)

Globus is a platform for managing research data, enabling the moving, sharing, and archiving
of large volumes of data among distributed sites
○ Manages data transfers between endpoints
○ Monitors performance and errors
○ Retries and corrects errors, where possible
○ Reports status back to users

Globus can be easily accessed either using CLI tools or a web-interface

Argonne Leadership Computing Facility35

A recap
Today we have covered various software technologies that comprise the HPC I/O stack, which
is used to persist, manage, and share large-scale scientific datasets
○ Parallel file systems offer high-performance, scalable file storage
○ I/O libraries provide interfaces for managing data at different abstraction layers
⏤ POSIX provides a portable, performant low-level file system interface
⏤ MPI-IO introduces capabilities for parallel access of files
⏤ HDF5 provides a data management interface more closely aligned with app data abstractions

○ Tools are available for better understanding and, ideally, improving I/O performance
○ File transfer/sharing mechanisms to enable collaboration

Always consider facility documentation and other resources to help understand general best
practice and reach out on support channels for help if you’re stuck!

Check out these hands-on sessions this afternoon to learn more:
○ Darshan (room 1406, Shane Snyder, ANL)
○ MPI-IO & HDF5 (room 1404, Rob Latham, ANL)
○ Globus (room 1405, Greg Nawrocki, University of Chicago)

Argonne Leadership Computing Facility

Thank you!

