

I/O libraries for Parallel Perf
Using and tuning MPI-IO and HDF5

Rob Latham (robl@mcs.anl.gov)
Math and Computer Science
Argonne National Laboratory

mailto:robl@mcs.anl.gov

Argonne Leadership Computing Facility3
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

MPI-IO

• I/O interface specification for use in MPI apps

• Data model is same as POSIX: stream of bytes in a file

• Features many improvements over POSIX:

• Collective I/O

• Noncontiguous I/O with MPI datatypes and file views

• Nonblocking I/O

• Fortran bindings (and additional languages)

• System for encoding files in a portable format (external32)

• Not self-describing – just a well-defined encoding of types

• Implementations available on most platforms

3

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility4
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

“Hello World” MPI-IO style

/* an "Info object": these store key-value strings for tuning the

 * underlying MPI-IO implementation */

 MPI_Info_create(&info);

 snprintf(buf, BUFSIZE, "Hello from rank %d of %d\n", rank, nprocs);

 len = strlen(buf);

 /* We're working with strings here but this approach works well

 * whenever amounts of data vary from process to process. */

 MPI_Exscan(&len, &offset, 1, MPI_OFFSET, MPI_SUM, MPI_COMM_WORLD);

 MPI_CHECK(MPI_File_open(MPI_COMM_WORLD, argv[1],

 MPI_MODE_CREATE|MPI_MODE_WRONLY, info, &fh));

 /* _all means collective. Even if we had no data to write, we would

 * still have to make this call. In exchange for this coordination,

 * the underlyng library might be able to greatly optimize the I/O */

 MPI_CHECK(MPI_File_write_at_all(fh, offset, buf, len, MPI_CHAR,

 &status));

 MPI_CHECK(MPI_File_close(&fh));

Hello from… Hello from…

Rank 0:

24 bytes at 0

Rank 1:

24 bytes at 24

…

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility5
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Running on Polaris

#!/bin/bash -l

#PBS -A fallwkshp23

#PBS -l walltime=00:10:00

#PBS -l select=1

#PBS -l place=scatter

#PBS -l filesystems=home:eagle

#PBS -q debug

#PBS -N hello-io

#PBS -V

mkdir -p /eagle/fallwkshp23/${USER}

NNODES=$(wc -l < $PBS_NODEFILE)

NRANKS_PER_NODE=32

NTOTRANKS=$((NNODES * NRANKS_PER_NODE))

cd $PBS_O_WORKDIR

mpiexec -n $NTOTRANKS --ppn $NRANKS_PER_NODE \

 ./hello-mpiio /eagle/fallwkshp23/${USER}/hello.out

% cat /eagle/fallwkshp23/${USER}/hello.out
Hello from rank 0 of 32
Hello from rank 1 of 32
Hello from rank 2 of 32
Hello from rank 3 of 32
Hello from rank 4 of 32
…
Hello from rank 29 of 32
Hello from rank 30 of 32
Hello from rank 31 of 32

Job submission script Output of “hello-mpiio”

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility6
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Key takeaways

• Simple example but still captures important concepts

• Info objects: tuning parameters:

• enable/disable optimizations

• Adjust buffer sizes

• Select alternate strategies

• Data placement in file specified by user

• “shared file pointer” possible but not optimized

• Collective vs independent I/O

• Error checking!!!

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility7
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

The IOR benchmark

• MPI application benchmark

• reads and writes data in configurable ways

• I/O pattern can be interleaved or random

• Input:

• transfer size, block size, segment count

• interleaved or random

• Output: Bandwidth and IOPS

• Configurable backends

• POSIX, STDIO, MPI-IO

• HDF5, PnetCDF, S3, rados

https://github.com/hpc/ior

P
o

s
itio

n
 in

 file

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://github.com/hpc/ior

Argonne Leadership Computing Facility8
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Hands-on: IOR and stripe size

• For a fixed number of nodes, MPI
processes, block size, and transfer
size…

• Vary the stripe count

• IOR environment variables

• Cray MPI-IO environment variables

• lfs setstripe

$stripe=1

 rm -f ${OUTPUT}/ior-stripe-$stripe.out

 export IOR_HINT__MPI__striping_factor=$stripe

 # -a MPIIO: using MPI-IO so we can pass the "striping_factor" hint

 # -e : fsync after each write phase: push out dirty data to storage

 # -C : reorder ranks: read from a different rank than the one that wrote

 # -s : segments: each client will write to eight regions

 # -i : repeat experiment five times: lots of variability in I/O

 # -t : transfer size: how big each request will be

 # -b : block size: how big each region will be in the file (needs to

 be a multiple of transfer size).

 mpiexec -n ${NTOTRANKS} --ppn ${NRANKS_PER_NODE} \

 ior --mpiio.showHints -a MPIIO \

 -e -C -s 8 -i 5 \

 -t 1MiB -b 64MiB -o ${OUTPUT}/ior-stripe-$stripe.out

00000 11111 22222 NNNN…

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility9
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Contention in benchmarkig

Installed Acceptance

 testing
Early

 Access
Production Retirement

C
o
n
te

n
ti
o
n

Ideal: 100% of

storage

available for

benchmarking
Reality: have to

share with

everyone else

Machine

less busy

now, but

no longer

interesting

– boo!

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility10
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Hands on: IOR and stripe count

• Default stripe size is 1

▪ Why? Most files small: optimizing for common case

• “All the servers” doesn’t seem to hurt performance here

▪ lfs setstripe -1 /path/to/file

• Could go further with “overstriping”

▪ Didn’t work on Polaris: investigating

• “Where’s my bandwidth?”

▪ 128 nodes (network links) here

▪ Shared file (so I can experiment with stripe count) means
lustre locking overhead/coordination

▪ Graph at right from February 2023 – any changes
today?

visualization_io/mpiio-hdf5/io-sleuthing/examples/striping

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility11
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Graphic from J. Tannahill, LLNL

Typical simulations divide up the region being
simulated into chunks, then group those
chunks into similar amounts of work.

These regions are then
distributed to cores
(columns) on nodes
(grey boxes) for
computation.

When speed of
writing is the priority,
blobs of data are
written from each
node into individual
files that must then
be post-processed
for analysis.

To prepare data for
analysis, a code
can write in a
canonical view by
processing the
data while it is in
memory, resulting
in a better
organized dataset.

or

Decomposition

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility12
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Contiguous and Noncontiguous I/O

• Contiguous I/O moves data from a single memory block into a
single file region

• Noncontiguous I/O has three forms:

• Noncontiguous in memory

• Noncontiguous in file

• Noncontiguous in both

• Structured data leads naturally to noncontiguous I/O (e.g.,
block decomposition)

• Describing noncontiguous accesses with a single operation
passes more knowledge to I/O system

12

Process 0 Process 0

Noncontiguous

in File

Noncontiguous

in Memory

Ghost cell

Stored element

…
Vars 0, 1, 2, 3, … 23

Extracting variables from a block

and skipping ghost cells will

result in noncontiguous I/O

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility13
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

I/O Transformations

Software between the application and the PFS performs transformations, primarily to improve performance

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2
When we think about I/O
transformations, we consider
the mapping of data between
application processes and
locations in file

◼Goals of transformations:
– Reduce number of I/O operations to PFS

(avoid latency, improve bandwidth)
– Avoid lock contention (eliminate serialization)
– Hide huge number of clients from PFS

servers

◼ “Transparent” transformations don’t
change the final file layout
– File system is still aware of the actual data

organization
– File can be later manipulated using serial

POSIX I/O

13

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility14
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Request Size and I/O Rate

Tests run on 1K processes of HPE/Cray Theta at Argonne

14

Request matches

Lustre “stripe size”:

good performance

with low variability

Small

deviations

from “power

of two” (e.g.

1024k vs

10^6) can

tank

performance

In general,

larger

requests

better.

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility15
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Reducing Number, Increasing Size of Operations

• Because most operations go over the network, I/O to a PFS incurs more latency than with a
local FS

• Data sieving is a technique to address I/O latency by combining operations:

• When reading, application process reads a large region holding all needed data and pulls out what is
needed

• When writing, three steps required (below)

Step 1: Data in region to be

modified are read into

intermediate buffer (1 read).

Step 2: Elements to be

written to file are replaced

in intermediate buffer.

Step 3: Entire region is

written back to storage with

a single write operation.

15

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility16
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Noncontig with IOR

• IOR can describe access with an MPI datatype

• --mpiio.useStridedDatatype –b … -s …

• (buggy in recent versions: use 4.0rc1 or newer)

16

blocksize segment count: 4

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility17
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Darshan: Characterizing Application I/O

Strategy: observe I/O behavior
at the application and library
level

• What did the application intend to do?

• How much time did it take to do it?

• What can be done to tune and improve?17

Application

Application I/O access

Runtime libraries

File system access

File system

Block access

Storage devices

Simplified HPC I/O stack

How is an application using the I/O system?

How successful is it at attaining high performance?

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility18

How does Darshan work?

18

• Darshan records file access statistics
independently on each process

• At app shutdown, collect, aggregate,
compress, and write log data

• After job completes, analyze Darshan log data
• darshan-parser - provides complete text-format

dump of all counters in a log file
• PyDarshan - Python analysis module for Darshan

logs, including a summary tool for creating HTML
reports

• Originally designed for MPI applications, but in recent Darshan versions (3.2+) any
dynamically-linked executable can be instrumented
➢ In MPI mode, a log is generated for each app
➢ In non-MPI mode, a log is generated for each process

➢ More information: https://docs.alcf.anl.gov/theta/performance-tools/darshan/ or
Shane’s (concurrent) session

https://docs.alcf.anl.gov/theta/performance-tools/darshan/

Argonne Leadership Computing Facility19
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Data Sieving in Practice

Naiive Data Sieving

MPI-IO writes 192 192

MPI-IO Reads 0 0

Posix Writes 192000 192000

Posix Reads 0 192015

MPI-IO bytes written 1 920 000 000 1 920 000 000

MPI-IO bytes read 0 0

Posix bytes read 0 100 039 006 128

Posix bytes written 1 920 000 000 100 564 552 704

Not always a win, particularly for writing:
• Enabling data sieving instead made writes slower: why?

• Locking to prevent false sharing (not needed for reads)
• Multiple processes per node writing simultaneously
• Internal ROMIO buffer too small, resulting in write amplification [1]

[1]

Selected Darshan statistics

visualization_io/mpiio-hdf5/io-sleuthing/examples/noncontig

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility20
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Data Sieving: time line

Top: MPI I/O call
describing
noncontiguous
regions

Independent: no
coordination
possible. Each
process does its
own data
sieving. Gaps

between
operations
show lock
acquisition.

One MPI I/O
call (top) turns
into many
POSIX
operations
(below)

https://github.com/hpc-io/dxt-explorer Interactive log analysis tool by Jean Luca Bez

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://github.com/hpc-io/dxt-explorer

Argonne Leadership Computing Facility21
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Avoiding Lock Contention

• To avoid lock contention when writing to a shared file, we can reorganize data between
processes

• Two-phase I/O splits I/O into a data reorganization phase and an interaction with the storage system
(two-phase write depicted):

• Data exchanged between processes to match file layout

• 0th phase determines exchange schedule (not shown)

Phase 1: Data are exchanged between

processes based on organization of data

in file.

Phase 2: Data are written to file (storage

servers) with large writes, no contention.

21

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility22
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Two-Phase I/O Algorithms

For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective I/O

Based on Underlying Parallel File System Locking Protocols,” SC2008, November 2008.

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility23
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Two-phase I/O in Practice

Naiive Data Sieving Two-phase

MPI-IO writes 192 192 192

MPI-IO Reads 0 0 0

Posix Writes 192000 192000 1832

Posix Reads 0 192015 0

MPI-IO bytes written 1 920 000 000 1 920 000 000 1 920 000 000

MPI-IO bytes read 0 0 0

Posix bytes read 0 100 039 006 128 0

Posix bytes written 1 920 000 000 100 564 552 704 1 920 000 000

• Consistent performance independent of access pattern
• Note re-scaled y axis [1]

• No write amplification, no read-modify-write
• Some network communication but networks are fast
• Requires “temporal locality” -- not great if writes “skewed”, imbalanced, or some process enter collective late.
• (Yes, those are some “impressive” error bars: investigating with Cray why first iteration so slow)

[2]

[1]

Selected Darshan statistics
visualization_io/mpiio-hdf5/io-sleuthing/examples/noncontig

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility24

HOT OFF THE PRESSES!

• Worked with Cray this week to understand
performance variations

• Found magic environment variable that connects
all the processes to each other on startup, not on
demand

• export MPICH_OFI_STARTUP_CONNECT=1

• Now error bars much more reasonable

• Yay for collaboration

• Explains a few other performance oddities we’ve
seen

• Only a “feature” of Slingshot-10

Argonne Leadership Computing Facility25
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Two-phase I/O: time line

25

Top: collective MPI
I/O call describing
noncontiguous
regions

Lustre-specific
optimization:
select
processes and
request sizes
based on file
stripe size,
stripe count.

Gaps
between
operations
show data
exchange
over
network

One
collective
MPI I/O call
per process:
library
transforms
request.

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility26
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Tuning MPI-IO: info objects

• You will likely never need these, but can help in specific situations:

• Both keys and values are strings

• Applicable to all ROMIO-based MPI-IO libraries

Hint Default Value effect

cb_buffer_size 16777216 An internal buffer for “two phase

i/o”. Bigger value takes away

application memory, but results in

fewer rounds of I/O

romio_cb_read

romio_cb_write

Enable (on cray)

automatic (ROMIO)

Turn on/off collective i/o: code

will fall through to independent

case

romio_no_indep_rw

cb_config_list

True

“*:*” (on Cray) or “*.1” elsewhere

“deferred open” – only i/o

aggregators open the file. Open

time not usually dominant factor

unless total I/O moved per file

fairly small

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility27

Tuning MPI-IO: cray-specific hints

Info key Default value effect

cray_cb_write_lock_mode 0 Set to “2” to try out “lock ahead”:

should allow greater concurrency

cray_cb_nodes_multiplier 1 Depending on stripe size and

number of nodes, “2” or more

might improve performance

• Hints that only work on Cray systems

• Perfectly fine to pass these (or anything) to any MPI library: libraries will ignore hints they don’t
recognize.

• More cray tuning at https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-
variables

https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables

Argonne Leadership Computing Facility28
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Data Model Libraries

• Scientific applications work with structured data and desire more self-describing file formats

• PnetCDF and HDF5 are two popular “higher level” I/O libraries

• Abstract away details of file layout

• Provide standard, portable file formats

• Include metadata describing contents

• For parallel machines, these use MPI and probably MPI-IO

• MPI-IO implementations are sometimes poor on specific platforms, in which case libraries might directly
call POSIX calls instead

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility29

The Parallel netCDF Interface and File Format

• Thanks to Wei-Keng Liao, Alok Choudhary, and Kaiyuan Hou (NWU) for their
help in the development of PnetCDF.

• https://parallel-netcdf.github.io/

https://parallel-netcdf.github.io/

Argonne Leadership Computing Facility30
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Parallel NetCDF (PnetCDF)

• Based on original “Network Common Data Format” (netCDF) work from Unidata
• Derived from their source code

• Data Model:
• Collection of variables in single file

• Typed, multidimensional array variables

• Attributes on file and variables

• Features:
• C, Fortran, and F90 interfaces (no python)

• Portable data format (identical to netCDF)

• Noncontiguous I/O in memory using MPI datatypes

• Noncontiguous I/O in file using sub-arrays

• Collective I/O

• Non-blocking I/O

• Unrelated to netCDF-4 work

• Parallel-NetCDF tutorial:
• https://parallel-netcdf.github.io/wiki/QuickTutorial.html

• Interface guide:
• http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html

• ‘man pnetcdf’ on polaris (after loading module)

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://parallel-netcdf.github.io/wiki/QuickTutorial.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html

Argonne Leadership Computing Facility31
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Parallel netCDF (PnetCDF)

• (Serial) netCDF

• API for accessing multi-dimensional data sets

• Portable file format

• Popular in both fusion and climate communities

• Parallel netCDF

• Very similar API to netCDF

• Tuned for better performance in today’s computing environments

• Retains the file format so netCDF and PnetCDF applications can share files

• PnetCDF builds on top of any MPI-IO implementation

ROMIO

PnetCDF

Lustre

Cluster

Spectrum-MPI

PnetCDF

IBM AC922 (Summit)

GPFS

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility32
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

netCDF Data Model

• The netCDF model provides a means for storing multiple,
multi-dimensional arrays in a single file.

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility33
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Record Variables in netCDF

• Record variables are defined to have a single

“unlimited” dimension

• Convenient when a dimension size is unknown at time

of variable creation

• Record variables are stored after all the other

variables in an interleaved format

• Using more than one in a file is likely to result in poor

performance due to number of noncontiguous accesses

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility34
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Pre-declaring I/O

• netCDF / Parallel-NetCDF: bimodal write interface

• Define mode: “here are my dimensions, variables, and attributes”

• Data mode: “now I’m writing out those values”

• Decoupling of description and execution shows up several places

• MPI non-blocking communication

• Parallel-NetCDF “write combining” (talk more in a few slides)

• MPI datatypes to a collective routines (if you squint really hard)

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility35
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HANDS-ON: writing with Parallel-NetCDF

• 2-D array in file, each rank writes ‘YDIM’ (1) rows

• Many details managed by pnetcdf library
• MPI-IO File views

• offsets

• Be mindful of define/data mode: call ncmpi_enddef()

• Library will take care of header i/o for you

1. Define two dimensions
• ncmpi_def_dim()

2. Define one variable
• ncmpi_def_var()

3. Collectively put variable
• ncmpi_put_vara_int_all()

• ‘start’ and ‘count’ arrays: each process selects different regions

4. Check your work with ‘ncdump <filename>’
• Hey look at that: serial tool reading parallel-written data: interoperability at work

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility36
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Solution fragments for Hands-on

/* row-major ordering */

NC_CHECK(ncmpi_def_dim(ncfile, "rows", YDIM*nprocs, &(dims[0])));

NC_CHECK(ncmpi_def_dim(ncfile, "elements", XDIM, &(dims[1])));

NC_CHECK(ncmpi_def_var(ncfile, "array", NC_INT, NDIMS, dims,

 &varid_array));

iterations=1;

NC_CHECK(ncmpi_put_att_int(ncfile, varid_array,

 "iteration", NC_INT, 1, &iterations));

start[0] = rank*YDIM; start[1] = 0;

count[0] = YDIM; count[1] = XDIM;

NC_CHECK(ncmpi_put_vara_int_all(ncfile, varid_array, start, count, values));

Defining dimension: give name, size; get ID

Defining variable: give name, “rank” and dimensions (id); get ID
Attributes: can be placed globally, on variables, dimensions

I/O: ‘start’ and ‘count’ give location, shape of subarray. ‘All’ means collective

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

Hdr

Full example in visualization_io/mpiio-hdf5/hands-on/array

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility37
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Inside PnetCDF Define Mode

• In define mode (collective)

• Use MPI_File_open to create file at create time

• Set hints as appropriate (more later)

• Locally cache header information in memory

• All changes are made to local copies at each process

• At ncmpi_enddef

• Process 0 writes header with MPI_File_write_at

• MPI_Bcast result to others

• Everyone has header data in memory, understands placement of all variables

• No need for any additional header I/O during data mode!

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility38
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Inside PnetCDF Data Mode

◼ Inside ncmpi_put_vara_all (once per variable)

– Each process performs data conversion into internal buffer

– Uses MPI_File_set_view to define file region

– MPI_File_write_all collectively writes data

◼At ncmpi_close

– MPI_File_close ensures data is written to storage

◼MPI-IO performs optimizations

– Two-phase possibly applied when writing variables

◼MPI-IO makes PFS calls

– PFS client code communicates with servers and stores data

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility39
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Inside PnetCDF: Darshan heatmap analysis

MPI-IO
POSIX

IOR writing Parallel-NetCDF (see visualization_io/mpiio-hdf5/hands-on/ior/polaris/ior-pnetcdf.sh)

[[1]

[[2]

[[3]

[1]: all processes call MPI write and read – re-reading going to be fast (cached)

[2]: one process wrote header -- small: just one pixel in POSIX

[3]: what you don’t see – only “aggregators” actually do I/O

[[2]

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility40
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HANDS-ON: reading with pnetcdf

• Similar to MPI-IO reader: just read one row

• Operate on netcdf arrays, not MPI datatypes

• Shortcut: can rely on “convention”

• One could know nothing about file as in previous slide

• In our case we know there’s a variable called “array” (id of 0) and an attribute called
“iteration”

• Routines you’ll need:

• ncmpi_inq_dim to turn dimension id to dimension length

• ncmpi_get_att_int to read “iteration” attribute

• ncmpi_get_vara_int_all to read column of array

4

N
p
ro

c
s

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility41

Solution fragments: reading with pnetcdf

NC_CHECK(ncmpi_inq_var(ncfile, 0, varname, &vartype, &nr_dims,

 dim_ids,&nr_attrs));

NC_CHECK(ncmpi_inq_dim(ncfile, dim_ids[0], NULL, &(dim_lens[0])));

NC_CHECK(ncmpi_inq_dim(ncfile, dim_ids[1], NULL, &(dim_lens[1])));

NC_CHECK(ncmpi_get_att_int(ncfile, 0, "iteration", &iterations));

count[0] = dim_lens[0]; count[1] = 1;

starts[0] = 0; starts[1] = XDIM/2;

NC_CHECK(ncmpi_get_vara_int_all(ncfile, 0, starts, count, read_buf));

Making inquiry about variable, dimensions

The “Iteration” attribute

No file views or datatypes: just a starting coordinate and size – everyone reads same slice in this case

Argonne Leadership Computing Facility42
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Parallel-NetCDF write-combining optimization

• netCDF variables laid out contiguously

• Applications typically store data in separate variables

• temperature(lat, long, elevation)

• Velocity_x(x, y, z, timestep)

• Operations posted independently, completed
collectively

• Defer, coalesce synchronization

• Increase average request size

ncmpi_iput_vara(ncfile, varid1, &start, &count, &data,

 count, MPI_INT, &requests[0]);

ncmpi_iput_vara(ncfile, varid2, &start, &count, &data,

 count, MPI_INT, &requests[1]);

ncmpi_wait_all(ncfile, 2, requests, statuses);

HEADER VAR1 VAR2

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility43
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Example: FLASH Astrophysics

• FLASH is an astrophysics code for

studying events such as supernovae

• Adaptive-mesh hydrodynamics

• Scales to 1000s of processors

• MPI for communication

• Frequently checkpoints:

• Large blocks of typed variables

from all processes

• Portable format

• Canonical ordering (different than

in memory)

• Skipping ghost cells Ghost cell

Stored element

…
Vars 0, 1, 2, 3, … 23

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility44
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

FLASH Astrophysics and the write-combining optimization

• FLASH writes one variable at a time

• Could combine all 4D variables
(temperature, pressure, etc) into one 5D
variable

• Altered file format (conventions) requires
updating entire analysis toolchain

• Write-combining provides improved
performance with same file conventions

• Larger requests, less synchronization.

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility45
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HANDS-ON: pnetcdf write-combining

1. Define a second variable, changing only the name

2. Write this second variable to the netcdf file

3. Convert to the non-blocking interface (ncmpi_iput_vara_int)

• not collective – “collectiveness” happens in ncmpi_wait_all

• takes an additional ‘request’ argument

4. Wait (collectively) for completion

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility46
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Solution fragments for write-combining

NC_CHECK(ncmpi_def_var(ncfile, "array", NC_INT, NDIMS, dims,

 &varid_array));

NC_CHECK(ncmpi_def_var(ncfile, "other array", NC_INT, NDIMS, dims,

 &varid_other));

NC_CHECK(ncmpi_iput_vara_int(ncfile, varid_array, start, count,

 values, &(reqs[0])));

NC_CHECK(ncmpi_iput_vara_int(ncfile, varid_other, start, count,

 values, &(reqs[1])));

/* all the I/O actually happens here */

NC_CHECK(ncmpi_wait_all(ncfile, 2, reqs, status));

Defining a second variable

The non-blocking interface: looks a lot like MPI

Waiting for I/O to complete

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility47
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Hands-on continued

• Look at the darshan output. Compare to darshan output for single-variable writing or reading

• Results on polaris surprised me: vendor might know something I don’t

• Maybe some kind of small-io optimization?

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility48
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

PnetCDF Wrap-Up

• PnetCDF gives us

• Simple, portable, self-describing container for data

• Collective I/O

• Data structures closely mapping to the variables described

• If PnetCDF meets application needs, it is likely to give good performance

• Type conversion to portable format does add overhead

• Some limits on (old, common CDF-2) file format:

• Fixed-size variable: < 4 GiB

• Per-record size of record variable: < 4 GiB

• 232 -1 records

• Contributed extended file format to relax these limits (CDF-5, released in pnetcdf-1.1.0,

November 2009, integrated in Unidata NetCDF-4.4)

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility49
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

49

The HDF5 Interface and
File Format

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility50
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HDF5

• Hierarchical Data Format, from The HDF Group (formerly of NCSA)

• https://www.hdfgroup.org/

• Data Model:

• Hierarchical data organization in single file

• Typed, multidimensional array storage

• Attributes on any HDF5 "object" (dataset, data, groups)

• Features:

• C, C++, Fortran, Java (JNI) interfaces

• Community-supported Python, Lua, R

• Portable data format

• Optional compression (even in parallel I/O mode)

• Chunking: efficient row or column oriented access

• Noncontiguous I/O (memory and file) with hyperslabs

• Parallel HDF5 tutorial:

• https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5

50

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://www.hdfgroup.org/
https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5

Argonne Leadership Computing Facility51

HDF5 Groups and Links

lat	lon	temp
 12 | 23 | 3.1
 15 | 24 | 4.2
 17 | 21 | 3.6

Experiment Notes:

Serial Number: 99378920

Date: 3/13/09

Configuration: Standard 3

/

SimOutViz

HDF5 groups and

links organize data

objects

51

Argonne Leadership Computing Facility52

DataMetadata

Dataspace

3

Rank

Dim_2 = 5

Dim_1 = 4

Dimensions

Time = 32.4

Pressure = 987

Temp = 56

(optional)

Attributes

Chunked

Compressed

Dim_3 = 7

Properties

Integer

Datatype

52

HDF5 Dataset

Argonne Leadership Computing Facility53

53
Datatype: 16-byte integer

Dataspace: Rank = 2

 Dimensions = 5 x 3

3

5

V

HDF5 Dataset

Argonne Leadership Computing Facility54
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HDF5 Dataspaces

Two roles:

Dataspace contains spatial information (logical layout) about a dataset stored in a file

• Rank and dimensions

• Permanent part of dataset
definition

Subsets: Dataspace describes application’s data buffer and data elements participating in
I/O

Rank = 2

Dimensions = 4x6

Rank = 1

Dimension = 10

54

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility55
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

H5Fcreate (H5Fopen) create (open) File

 H5Screate_simple/H5Screate create dataspace

 H5Dcreate (H5Dopen) create (open) Dataset

 H5Sselect_hyperslab select subsections of data

 H5Dread, H5Dwrite access Dataset

 H5Dclose close Dataset

 H5Sclose close dataSpace

H5Fclose close File

NOTE: Order not strictly specified

55

Basic Functions

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility56
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HDF5 example: opening with MPI-IO

 /* Initialize MPI */

 MPI_Init(&argc, &argv);

 …

 /* Create an HDF5 file access property list */

 fapl_id = H5Pcreate (H5P_FILE_ACCESS);

 /* Set file access property list to use the MPI-IO file driver */

 ret = H5Pset_fapl_mpio(fapl_id, MPI_COMM_WORLD, MPI_INFO_NULL);

 /* Create the file collectively */

 file_id = H5Fcreate(argv[1], H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);

 /* Release file access property list */

 ret = H5Pclose(fapl_id);

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility57
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HDF5 example: setting up data transfer

/* Select column of elements in the file dataset */

 file_start[0] = 0; file_start[1] = mpi_rank;

 file_count[0] = DIM0; file_count[1] = 1;

 ret = H5Sselect_hyperslab(file_space_id, H5S_SELECT_SET,

 file_start, NULL, file_count, NULL);

 mem_start[0] = 0; mem_count[0] = DIM0;

 ret = H5Sselect_hyperslab(mem_space_id, H5S_SELECT_SET,

 mem_start, NULL, mem_count, NULL);

 /* Set up the collective transfer properties list */

 dxpl_id = H5Pcreate(H5P_DATASET_XFER);

 ret = H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE);

 /* Write data (one column of doubles) collectively */

 ret = H5Dwrite(dset_id, H5T_NATIVE_DOUBLE, mem_space_id,

 file_space_id, dxpl_id, write_buf);

D
IM

0

nprocs

…

DIM0 elements

…

MEMORY

FILE

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility58
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Effect of HDF5 Tuning

• HDF5 property lists can have big impact on
internal operations

• Collective I/O vs. Independent I/O

• Huge reduction in operation count

• Implies all processes hit I/O at same time

• Collective metadata (new in 1.10.2)

• Further reduction in op count, especially reads
(reading HDF5 internal layout information)

• Big implications for performance at scale

58

Operation counts Independent Coll.

I/O

Coll. MD

POSIX Write 3680007 9 9

MPI-IO Indep write 3680007 7 0

MPI IO Collective

Write

0 16 48

POSIX Read 3680113 115 10

MPI-IO indep read 3680113 113 8

MPI-IO collective read 0 16 16

Selected Darshan statistics for 16 MPI processes writing 230 K

doubles to HDF dataset, reading back same.
visualization_io/mpiio-hdf5/hands-on/hdf5/h5par-comparison.c

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility59
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Effect of HDF5 Tuning

• HDF5 property lists can have big impact on
internal operations

• Collective I/O vs. Independent I/O

• Huge reduction in operation count

• Implies all processes hit I/O at same time

• Collective metadata (new in 1.10.2)

• Further reduction in op count, especially reads
(reading HDF5 internal layout information)

• Big implications for performance at scale

59

MPI-IO POSIX in
d
e
p
e
n
d
e
n
t

c
o
lle

c
tiv

e

visualization_io/mpiio-hdf5/io-sleuthing/examples/hdf5

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility60
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HDF5 in other languages

• Python:

• H5py: http://www.h5py.org/

• closely coupled with mpi4py and numpy;

• some collective tuning not exposed at python level

• C++:

• Highfive: https://github.com/BlueBrain/HighFive

• header-only interface to HDF5 C API

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
http://www.h5py.org/
https://github.com/BlueBrain/HighFive

Argonne Leadership Computing Facility61

New HDF5 features:

• New in HDF5-1.14.0

• Async operations

• Potential for background progress

• Multi-dataset I/O

• Similar to pnetcdf “operation combining”

Argonne Leadership Computing Facility62
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Data Model I/O libraries

▪ Parallel-NetCDF: http://www.mcs.anl.gov/pnetcdf

▪ HDF5: http://www.hdfgroup.org/HDF5/

▪ NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
– netCDF API with HDF5 back-end

▪ ADIOS: http://adiosapi.org
– Configurable (xml) I/O approaches

▪ SILO: https://wci.llnl.gov/codes/silo/
– A mesh and field library on top of HDF5 (and others)

▪ H5part: http://vis.lbl.gov/Research/AcceleratorSAPP/
– simplified HDF5 API for particle simulations

▪ GIO: https://svn.pnl.gov/gcrm
– Targeting geodesic grids as part of GCRM

▪ PIO:
– climate-oriented I/O library; supports raw binary, parallel-netcdf, or serial-netcdf (from master)

▪ … Many more: consider existing libs before deciding to make your own.

▪ Note absence of a “machine learning” library – research opportunity for someone!

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
http://www.mcs.anl.gov/pnetcdf
http://www.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://adiosapi.org/
https://wci.llnl.gov/codes/silo/
https://svn.pnl.gov/gcrm

Argonne Leadership Computing Facility63
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Wrap-up

• Lots of activity, history making I/O better… Still a lot to do!

• Workflow, task-oriented, AI/ML

• ALCF consultants, research community eager to help

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

	Slide 1
	Slide 2: I/O libraries for Parallel Perf
	Slide 3: MPI-IO
	Slide 4: “Hello World” MPI-IO style
	Slide 5: Running on Polaris
	Slide 6: Key takeaways
	Slide 7: The IOR benchmark
	Slide 8: Hands-on: IOR and stripe size
	Slide 9: Contention in benchmarkig
	Slide 10: Hands on: IOR and stripe count
	Slide 11: Decomposition
	Slide 12: Contiguous and Noncontiguous I/O
	Slide 13: I/O Transformations
	Slide 14: Request Size and I/O Rate
	Slide 15: Reducing Number, Increasing Size of Operations
	Slide 16: Noncontig with IOR
	Slide 17: Darshan: Characterizing Application I/O
	Slide 18: How does Darshan work?
	Slide 19: Data Sieving in Practice
	Slide 20: Data Sieving: time line
	Slide 21: Avoiding Lock Contention
	Slide 22: Two-Phase I/O Algorithms
	Slide 23: Two-phase I/O in Practice
	Slide 24: HOT OFF THE PRESSES!
	Slide 25: Two-phase I/O: time line
	Slide 26: Tuning MPI-IO: info objects
	Slide 27: Tuning MPI-IO: cray-specific hints
	Slide 28: Data Model Libraries
	Slide 29: The Parallel netCDF Interface and File Format
	Slide 30: Parallel NetCDF (PnetCDF)
	Slide 31: Parallel netCDF (PnetCDF)
	Slide 32: netCDF Data Model
	Slide 33: Record Variables in netCDF
	Slide 34: Pre-declaring I/O
	Slide 35: HANDS-ON: writing with Parallel-NetCDF
	Slide 36: Solution fragments for Hands-on
	Slide 37: Inside PnetCDF Define Mode
	Slide 38: Inside PnetCDF Data Mode
	Slide 39: Inside PnetCDF: Darshan heatmap analysis
	Slide 40: HANDS-ON: reading with pnetcdf
	Slide 41: Solution fragments: reading with pnetcdf
	Slide 42: Parallel-NetCDF write-combining optimization
	Slide 43: Example: FLASH Astrophysics
	Slide 44: FLASH Astrophysics and the write-combining optimization
	Slide 45: HANDS-ON: pnetcdf write-combining
	Slide 46: Solution fragments for write-combining
	Slide 47: Hands-on continued
	Slide 48: PnetCDF Wrap-Up
	Slide 49:
	Slide 50: HDF5
	Slide 51: HDF5 Groups and Links
	Slide 52
	Slide 53: HDF5 Dataset
	Slide 54: HDF5 Dataspaces
	Slide 55: Basic Functions
	Slide 56: HDF5 example: opening with MPI-IO
	Slide 57: HDF5 example: setting up data transfer
	Slide 58: Effect of HDF5 Tuning
	Slide 59: Effect of HDF5 Tuning
	Slide 60: HDF5 in other languages
	Slide 61: New HDF5 features:
	Slide 62: Data Model I/O libraries
	Slide 63: Wrap-up

