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MPI-IO

• I/O interface specification for use in MPI apps

• Data model is same as POSIX: stream of bytes in a file

• Features many improvements over POSIX:

• Collective I/O

• Noncontiguous I/O with MPI datatypes and file views

• Nonblocking I/O

• Fortran bindings (and additional languages)

• System for encoding files in a portable format (external32)

• Not self-describing – just a well-defined encoding of types

• Implementations available on most platforms

3

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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“Hello World” MPI-IO style

/* an "Info object":  these store key-value strings for tuning the

     * underlying MPI-IO implementation */

    MPI_Info_create(&info);

    snprintf(buf, BUFSIZE, "Hello from rank %d of %d\n", rank, nprocs);

    len = strlen(buf);

    /* We're working with strings here but this approach works well

     * whenever amounts of data vary from process to process. */

    MPI_Exscan(&len, &offset, 1, MPI_OFFSET, MPI_SUM, MPI_COMM_WORLD);

    MPI_CHECK(MPI_File_open(MPI_COMM_WORLD, argv[1],

                MPI_MODE_CREATE|MPI_MODE_WRONLY, info, &fh));

    /* _all means collective.  Even if we had no data to write, we would

     * still have to make this call.  In exchange for this coordination,

     * the underlyng library might be able to greatly optimize the I/O */

    MPI_CHECK(MPI_File_write_at_all(fh, offset, buf, len, MPI_CHAR,

                &status));

    MPI_CHECK(MPI_File_close(&fh));

Hello from… Hello from…

Rank 0:

24 bytes at 0

Rank 1:

24 bytes at 24

…

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Running on Polaris

#!/bin/bash -l

#PBS -A fallwkshp23

#PBS -l walltime=00:10:00

#PBS -l select=1

#PBS -l place=scatter

#PBS -l filesystems=home:eagle

#PBS -q debug

#PBS -N hello-io

#PBS -V

mkdir -p /eagle/fallwkshp23/${USER}

NNODES=$(wc -l < $PBS_NODEFILE)

NRANKS_PER_NODE=32

NTOTRANKS=$(( NNODES * NRANKS_PER_NODE ))

cd $PBS_O_WORKDIR

mpiexec -n $NTOTRANKS --ppn $NRANKS_PER_NODE \

 ./hello-mpiio /eagle/fallwkshp23/${USER}/hello.out

% cat /eagle/fallwkshp23/${USER}/hello.out
Hello from rank 0 of 32
Hello from rank 1 of 32
Hello from rank 2 of 32
Hello from rank 3 of 32
Hello from rank 4 of 32
…
Hello from rank 29 of 32
Hello from rank 30 of 32
Hello from rank 31 of 32

Job submission script Output of “hello-mpiio”

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Key takeaways

• Simple example but still captures important concepts

• Info objects:  tuning parameters: 

•  enable/disable optimizations

• Adjust buffer sizes

• Select alternate strategies

• Data placement in file specified by user

• “shared file pointer” possible but not optimized

• Collective vs independent I/O

• Error checking!!!

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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The IOR benchmark

• MPI application benchmark

• reads and writes data in configurable ways

• I/O pattern can be interleaved or random

• Input:

• transfer size, block size, segment count

• interleaved or random

• Output: Bandwidth and IOPS

• Configurable backends

• POSIX, STDIO, MPI-IO

• HDF5, PnetCDF, S3, rados

https://github.com/hpc/ior 

P
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n
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 file

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://github.com/hpc/ior
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Hands-on: IOR and stripe size

• For a fixed number of nodes, MPI 
processes, block size, and transfer 
size…

• Vary the stripe count

• IOR environment variables

• Cray MPI-IO environment variables

• lfs setstripe

$stripe=1

 rm  -f ${OUTPUT}/ior-stripe-$stripe.out

 export IOR_HINT__MPI__striping_factor=$stripe

   # -a MPIIO: using MPI-IO so we can pass the "striping_factor" hint

   # -e      : fsync after each write phase: push out dirty data to storage

   # -C      : reorder ranks: read from a different rank than the one that wrote

   # -s      : segments: each client will write to eight regions

   # -i      : repeat experiment five times: lots of variability in I/O

   # -t      : transfer size: how big each request will be

   # -b      : block size:  how big each region will be in the file (needs to 

                     be a multiple of transfer size).

 mpiexec -n ${NTOTRANKS} --ppn ${NRANKS_PER_NODE} \

        ior --mpiio.showHints -a MPIIO \

 -e -C -s 8 -i 5 \

 -t 1MiB -b 64MiB -o ${OUTPUT}/ior-stripe-$stripe.out

00000 11111 22222 NNNN…

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Contention in benchmarkig

Installed Acceptance

 testing
Early

 Access
Production Retirement

C
o
n
te

n
ti
o
n

Ideal: 100% of 

storage 

available for 

benchmarking
Reality: have to 

share with 

everyone else

Machine 

less busy 

now, but 

no longer 

interesting 

– boo!

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Hands on: IOR and stripe count

• Default stripe size is 1

▪ Why?  Most files small: optimizing for common case

• “All the servers” doesn’t seem to hurt performance here

▪ lfs setstripe -1 /path/to/file

• Could go further with “overstriping”

▪ Didn’t work on Polaris: investigating

• “Where’s my bandwidth?”

▪ 128 nodes (network links) here

▪ Shared file (so I can experiment with stripe count) means 
lustre locking overhead/coordination

▪ Graph at right from February 2023 – any changes 
today?

visualization_io/mpiio-hdf5/io-sleuthing/examples/striping

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility11
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop 

Graphic from J. Tannahill, LLNL

Typical simulations divide up the region being 
simulated into chunks, then group those 
chunks into similar amounts of work.

These regions are then 
distributed to cores 
(columns) on nodes 
(grey boxes) for 
computation.

When speed of 
writing is the priority, 
blobs of data are 
written from each 
node into individual 
files that must then 
be post-processed 
for analysis.

To prepare data for 
analysis, a code 
can write in a 
canonical view by 
processing the 
data while it is in 
memory, resulting 
in a better 
organized dataset.

or

Decomposition

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Contiguous and Noncontiguous I/O

• Contiguous I/O moves data from a single memory block into a 
single file region

• Noncontiguous I/O has three forms:

• Noncontiguous in memory

• Noncontiguous in file

• Noncontiguous in both

• Structured data leads naturally to noncontiguous I/O (e.g., 
block decomposition)

• Describing noncontiguous accesses with a single operation 
passes more knowledge to I/O system

12

Process 0 Process 0

Noncontiguous

in File

Noncontiguous

in Memory

Ghost cell

Stored element

…
Vars 0, 1, 2, 3, … 23

Extracting variables from a block 

and skipping ghost cells will 

result in noncontiguous I/O

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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I/O Transformations

Software between the application and the PFS performs transformations, primarily to improve performance

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2
When we think about I/O 
transformations, we consider 
the mapping of data between 
application processes and 
locations in file

◼Goals of transformations:
– Reduce number of I/O operations to PFS 

(avoid latency, improve bandwidth)
– Avoid lock contention (eliminate serialization)
– Hide huge number of clients from PFS 

servers

◼ “Transparent” transformations don’t 
change the final file layout
– File system is still aware of the actual data 

organization
– File can be later manipulated using serial 

POSIX I/O

13

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Request Size and I/O Rate

Tests run on 1K processes of HPE/Cray Theta at Argonne

14

Request matches 

Lustre “stripe size”: 

good performance 

with low variability

Small 

deviations 

from “power 

of two” (e.g. 

1024k vs 

10^6) can 

tank 

performance

In general, 

larger 

requests 

better.

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Reducing Number, Increasing Size of Operations

• Because most operations go over the network, I/O to a PFS incurs more latency than with a 
local FS

• Data sieving is a technique to address I/O latency by combining operations:

• When reading, application process reads a large region holding all needed data and pulls out what is 
needed

• When writing, three steps required (below)

Step 1: Data in region to be 

modified are read into 

intermediate buffer (1 read).

Step 2: Elements to be 

written to file are replaced 

in intermediate buffer.

Step 3: Entire region is 

written back to storage with 

a single write operation.

15

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Noncontig with IOR

• IOR can describe access with an MPI datatype

• --mpiio.useStridedDatatype –b … -s …

• (buggy in recent versions: use 4.0rc1 or newer)

16

blocksize segment count: 4

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Darshan: Characterizing Application I/O

Strategy: observe I/O behavior 
at the application and library 
level

• What did the application intend to do?

• How much time did it take to do it?

• What can be done to tune and improve?17

Application

Application I/O access

Runtime libraries

File system access

File system

Block access

Storage devices

Simplified HPC I/O stack

How is an application using the I/O system?

How successful is it at attaining high performance?

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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How does Darshan work?

18

• Darshan records file access statistics 
independently on each process

• At app shutdown, collect, aggregate, 
compress, and write log data

• After job completes, analyze Darshan log data 
• darshan-parser - provides complete text-format 

dump of all counters in a log file
• PyDarshan - Python analysis module for Darshan 

logs, including a summary tool for creating HTML 
reports 

• Originally designed for MPI applications, but in recent Darshan versions (3.2+) any 
dynamically-linked executable can be instrumented
➢ In MPI mode, a log is generated for each app
➢ In non-MPI mode, a log is generated for each process

➢ More information:  https://docs.alcf.anl.gov/theta/performance-tools/darshan/ or 
Shane’s (concurrent) session

https://docs.alcf.anl.gov/theta/performance-tools/darshan/
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Data Sieving in Practice

Naiive Data Sieving

MPI-IO writes 192 192

MPI-IO Reads 0 0

Posix Writes 192000 192000

Posix Reads 0 192015

MPI-IO bytes written 1 920 000 000 1 920 000 000

MPI-IO bytes read 0 0

Posix bytes read 0 100 039 006 128

Posix bytes written 1 920 000 000 100 564 552 704

Not always a win, particularly for writing:
• Enabling data sieving instead made writes slower: why?

• Locking to prevent false sharing (not needed for reads)
• Multiple processes per node writing simultaneously
• Internal ROMIO buffer too small, resulting in write amplification [1]

[1]

Selected Darshan statistics

visualization_io/mpiio-hdf5/io-sleuthing/examples/noncontig 

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Data Sieving: time line

Top: MPI I/O call 
describing 
noncontiguous 
regions

Independent: no 
coordination 
possible.  Each 
process does its 
own data 
sieving. Gaps 

between 
operations 
show lock 
acquisition.  

One MPI I/O 
call (top) turns 
into many 
POSIX 
operations 
(below)

https://github.com/hpc-io/dxt-explorer Interactive log analysis tool by Jean Luca Bez

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://github.com/hpc-io/dxt-explorer
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Avoiding Lock Contention

• To avoid lock contention when writing to a shared file, we can reorganize data between 
processes

• Two-phase I/O splits I/O into a data reorganization phase and an interaction with the storage system 
(two-phase write depicted):

• Data exchanged between processes to match file layout

• 0th phase determines exchange schedule (not shown)

Phase 1: Data are exchanged between 

processes based on organization of data 

in file.

Phase 2: Data are written to file (storage 

servers) with large writes, no contention.

21

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Two-Phase I/O Algorithms

For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective I/O 

Based on Underlying Parallel File System Locking Protocols,” SC2008, November 2008.

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Two-phase I/O in Practice

Naiive Data Sieving Two-phase

MPI-IO writes 192 192 192

MPI-IO Reads 0 0 0

Posix Writes 192000 192000 1832

Posix Reads 0 192015 0

MPI-IO bytes written 1 920 000 000 1 920 000 000 1 920 000 000

MPI-IO bytes read 0 0 0

Posix bytes read 0 100 039 006 128 0

Posix bytes written 1 920 000 000 100 564 552 704 1 920 000 000

• Consistent performance independent of access pattern
• Note re-scaled y axis [1]

• No write amplification, no read-modify-write
• Some network communication but networks are fast
• Requires “temporal locality” -- not great if writes “skewed”, imbalanced, or some process enter collective late. 
• (Yes, those are some “impressive” error bars: investigating with Cray why first iteration so slow) 

[2]

[1]

Selected Darshan statistics
visualization_io/mpiio-hdf5/io-sleuthing/examples/noncontig

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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HOT OFF THE PRESSES!

• Worked with Cray this week to understand 
performance variations

• Found magic environment variable that connects 
all the processes to each other on startup, not on 
demand

• export MPICH_OFI_STARTUP_CONNECT=1

• Now error bars much more reasonable

• Yay for collaboration

• Explains a few other performance oddities we’ve 
seen

• Only a “feature” of Slingshot-10
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Two-phase I/O: time line

25

Top: collective MPI 
I/O call describing 
noncontiguous 
regions 

Lustre-specific 
optimization: 
select 
processes and 
request sizes 
based on file 
stripe size, 
stripe count. 

Gaps 
between 
operations 
show data 
exchange 
over 
network

One 
collective  
MPI I/O call 
per process: 
library 
transforms 
request.

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Tuning MPI-IO: info objects

• You will likely never need these, but can help in specific situations:

• Both keys and values are strings

• Applicable to all ROMIO-based MPI-IO libraries 

Hint Default Value effect

cb_buffer_size 16777216 An internal buffer for “two phase 

i/o”.  Bigger value takes away 

application memory, but results in 

fewer rounds of I/O

romio_cb_read

romio_cb_write

Enable (on cray)

automatic (ROMIO)

Turn on/off collective i/o:  code 

will fall through to independent 

case

romio_no_indep_rw

cb_config_list

True

“*:*” (on Cray) or “*.1” elsewhere

“deferred open” – only i/o 

aggregators open the file.  Open 

time not usually dominant factor 

unless total I/O moved per file 

fairly small

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Tuning MPI-IO: cray-specific hints

Info key Default value effect

cray_cb_write_lock_mode 0 Set to “2” to try out “lock ahead”:  

should allow greater concurrency

cray_cb_nodes_multiplier 1 Depending on stripe size and 

number of nodes, “2” or more 

might improve performance

• Hints that only work on Cray systems

• Perfectly fine to pass these (or anything) to any MPI library:  libraries will ignore hints they don’t 
recognize. 

• More cray tuning at https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-
variables 

https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables
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Data Model Libraries

• Scientific applications work with structured data and desire more self-describing file formats

• PnetCDF and HDF5 are two popular “higher level” I/O libraries

• Abstract away details of file layout

• Provide standard, portable file formats

• Include metadata describing contents

• For parallel machines, these use MPI and probably MPI-IO

• MPI-IO implementations are sometimes poor on specific platforms, in which case libraries might directly 
call POSIX calls instead

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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The Parallel netCDF Interface and File Format

• Thanks to Wei-Keng Liao, Alok Choudhary, and Kaiyuan Hou (NWU) for their 
help in the development of PnetCDF.

• https://parallel-netcdf.github.io/ 

https://parallel-netcdf.github.io/
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Parallel NetCDF (PnetCDF)

• Based on original “Network Common Data Format” (netCDF) work from Unidata
• Derived from their source code

• Data Model:
• Collection of variables in single file

• Typed, multidimensional array variables

• Attributes on file and variables

• Features:
• C, Fortran, and F90 interfaces (no python)

• Portable data format (identical to netCDF)

• Noncontiguous I/O in memory using MPI datatypes

• Noncontiguous I/O in file using sub-arrays

• Collective I/O

• Non-blocking I/O

• Unrelated to netCDF-4 work

• Parallel-NetCDF tutorial:
• https://parallel-netcdf.github.io/wiki/QuickTutorial.html

• Interface guide:
• http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html

• ‘man pnetcdf’ on polaris (after loading module)

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://parallel-netcdf.github.io/wiki/QuickTutorial.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html
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Parallel netCDF (PnetCDF)

• (Serial) netCDF

• API for accessing multi-dimensional data sets

• Portable file format

• Popular in both fusion and climate communities

• Parallel netCDF

• Very similar API to netCDF

• Tuned for better performance in today’s computing environments

• Retains the file format so netCDF and PnetCDF applications can share files

• PnetCDF builds on top of any MPI-IO implementation

ROMIO

PnetCDF

Lustre

Cluster

Spectrum-MPI

PnetCDF

IBM AC922 (Summit)

GPFS

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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netCDF Data Model

• The netCDF model provides a means for storing multiple, 
multi-dimensional arrays in a single file.

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Record Variables in netCDF

• Record variables are defined to have a single 

“unlimited” dimension

• Convenient when a dimension size is unknown at time 

of variable creation

• Record variables are stored after all the other 

variables in an interleaved format

• Using more than one in a file is likely to result in poor 

performance due to number of noncontiguous accesses

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Pre-declaring I/O

• netCDF / Parallel-NetCDF: bimodal write interface

• Define mode: “here are my dimensions, variables, and attributes”

• Data mode: “now I’m writing out those values”

• Decoupling of description and execution shows up several places

• MPI non-blocking communication

• Parallel-NetCDF “write combining” (talk more in a few slides)

• MPI datatypes to a collective routines (if you squint really hard) 

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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HANDS-ON: writing with Parallel-NetCDF

• 2-D array in file, each rank writes ‘YDIM’  (1) rows

• Many details managed by pnetcdf library
• MPI-IO File views

• offsets

• Be mindful of define/data mode: call ncmpi_enddef()

• Library will take care of header i/o for you

1. Define two dimensions
• ncmpi_def_dim()

2. Define one variable
• ncmpi_def_var()

3. Collectively put variable
• ncmpi_put_vara_int_all()

• ‘start’ and ‘count’ arrays: each process selects different regions

4. Check your work with ‘ncdump <filename>’
• Hey look at that: serial tool reading parallel-written data: interoperability at work

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Solution fragments for Hands-on

/* row-major ordering */

NC_CHECK(ncmpi_def_dim(ncfile, "rows", YDIM*nprocs, &(dims[0])) );

NC_CHECK(ncmpi_def_dim(ncfile, "elements", XDIM, &(dims[1])) );

NC_CHECK(ncmpi_def_var(ncfile, "array", NC_INT, NDIMS, dims,

                &varid_array));

iterations=1;

NC_CHECK(ncmpi_put_att_int(ncfile, varid_array,

                "iteration", NC_INT, 1, &iterations));

start[0] = rank*YDIM; start[1] = 0;

count[0] = YDIM; count[1] = XDIM;

NC_CHECK(ncmpi_put_vara_int_all(ncfile, varid_array, start, count, values) );

Defining dimension: give name, size; get ID

Defining variable: give name, “rank” and dimensions (id); get ID
Attributes: can be placed globally, on variables, dimensions

I/O: ‘start’ and ‘count’ give location, shape of subarray. ‘All’ means collective

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

Hdr

Full example in visualization_io/mpiio-hdf5/hands-on/array

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Inside PnetCDF Define Mode

• In define mode (collective)

• Use MPI_File_open to create file at create time

• Set hints as appropriate (more later)

• Locally cache header information in memory

• All changes are made to local copies at each process

• At ncmpi_enddef

• Process 0 writes header with MPI_File_write_at

• MPI_Bcast result to others

• Everyone has header data in memory, understands placement of all variables

• No need for any additional header I/O during data mode!

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Inside PnetCDF Data Mode

◼ Inside ncmpi_put_vara_all (once per variable) 

– Each process performs data conversion into internal buffer

– Uses MPI_File_set_view to define file region

– MPI_File_write_all collectively writes data

◼At ncmpi_close

– MPI_File_close ensures data is written to storage

◼MPI-IO performs optimizations

– Two-phase possibly applied when writing variables

◼MPI-IO makes PFS calls

– PFS client code communicates with servers and stores data

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Inside PnetCDF: Darshan heatmap analysis

MPI-IO
POSIX

IOR writing Parallel-NetCDF (see visualization_io/mpiio-hdf5/hands-on/ior/polaris/ior-pnetcdf.sh)

[[1]

[[2]

[[3]

[1]: all processes call MPI write and read – re-reading going to be fast (cached)

[2]: one process wrote header  -- small: just one pixel in POSIX 

[3]: what you don’t see – only “aggregators” actually do I/O

[[2]

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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HANDS-ON: reading with pnetcdf

• Similar to MPI-IO reader: just read one row

• Operate on netcdf arrays, not MPI datatypes

• Shortcut: can rely on “convention”

• One could know nothing about file as in previous slide

• In our case we know there’s a variable called “array” (id of 0) and an attribute called 
“iteration”

• Routines you’ll need:

• ncmpi_inq_dim to turn dimension id to dimension length

• ncmpi_get_att_int to read “iteration” attribute

• ncmpi_get_vara_int_all to read column of array

4

N
p
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c
s

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Solution fragments: reading with pnetcdf

NC_CHECK(ncmpi_inq_var(ncfile, 0, varname, &vartype, &nr_dims,

     dim_ids,&nr_attrs));

NC_CHECK(ncmpi_inq_dim(ncfile, dim_ids[0], NULL, &(dim_lens[0])) );

NC_CHECK(ncmpi_inq_dim(ncfile, dim_ids[1], NULL, &(dim_lens[1])) );

NC_CHECK(ncmpi_get_att_int(ncfile, 0, "iteration", &iterations));

count[0] = dim_lens[0]; count[1] = 1;

starts[0] = 0;     starts[1] = XDIM/2;

NC_CHECK(ncmpi_get_vara_int_all(ncfile, 0, starts, count, read_buf));

Making inquiry about variable, dimensions

The “Iteration” attribute

No file views or datatypes:  just a starting coordinate and size – everyone reads same slice in this case
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Parallel-NetCDF write-combining optimization

• netCDF variables laid out contiguously

• Applications typically store data in separate variables

• temperature(lat, long, elevation)

• Velocity_x(x, y, z, timestep)

• Operations posted independently, completed 
collectively

• Defer, coalesce synchronization

• Increase average request size

ncmpi_iput_vara(ncfile, varid1, &start, &count, &data, 

 count, MPI_INT, &requests[0]);

ncmpi_iput_vara(ncfile, varid2, &start, &count, &data,

 count, MPI_INT, &requests[1]);

ncmpi_wait_all(ncfile, 2, requests, statuses);

HEADER VAR1 VAR2

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Example: FLASH Astrophysics

• FLASH is an astrophysics code for

studying events such as supernovae

• Adaptive-mesh hydrodynamics

• Scales to 1000s of processors

• MPI for communication

• Frequently checkpoints:

• Large blocks of typed variables

from all processes

• Portable format

• Canonical ordering (different than

in memory)

• Skipping ghost cells Ghost cell

Stored element

…
Vars 0, 1, 2, 3, … 23

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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FLASH Astrophysics and the write-combining optimization

• FLASH writes one variable at a time

• Could combine all  4D variables 
(temperature, pressure, etc) into one 5D 
variable

• Altered file format (conventions) requires 
updating entire analysis toolchain

• Write-combining provides improved 
performance with same file conventions

• Larger requests, less synchronization. 

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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HANDS-ON: pnetcdf write-combining

1. Define a second variable, changing only the name

2. Write this second variable to the netcdf file

3. Convert to the non-blocking interface (ncmpi_iput_vara_int)

• not collective – “collectiveness” happens in ncmpi_wait_all

• takes an additional ‘request’ argument

4. Wait (collectively) for completion

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Solution fragments for write-combining

NC_CHECK(ncmpi_def_var(ncfile, "array", NC_INT, NDIMS, dims,

                &varid_array));

NC_CHECK(ncmpi_def_var(ncfile, "other array", NC_INT, NDIMS, dims,

  &varid_other));

NC_CHECK(ncmpi_iput_vara_int(ncfile, varid_array, start, count,

                values, &(reqs[0]) ) );

NC_CHECK(ncmpi_iput_vara_int(ncfile, varid_other, start, count,

                values, &(reqs[1]) ) );

/* all the I/O actually happens here */

NC_CHECK(ncmpi_wait_all(ncfile, 2, reqs, status));

Defining a second variable

The non-blocking interface: looks a lot like MPI

Waiting for I/O to complete

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Hands-on continued

• Look at the darshan output.  Compare to darshan output for single-variable writing or reading

• Results on polaris surprised me:  vendor might know something I don’t

• Maybe some kind of small-io optimization?

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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PnetCDF Wrap-Up

• PnetCDF gives us

• Simple, portable, self-describing container for data

• Collective I/O

• Data structures closely mapping to the variables described

• If PnetCDF meets application needs, it is likely to give good performance

• Type conversion to portable format does add overhead

• Some limits on (old, common CDF-2) file format:

• Fixed-size variable:  < 4 GiB

• Per-record size of record variable: < 4 GiB

• 232 -1 records 

• Contributed extended file format to relax these limits (CDF-5, released in pnetcdf-1.1.0, 

November 2009, integrated in Unidata NetCDF-4.4)

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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49

The HDF5 Interface and
File Format

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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HDF5

• Hierarchical Data Format, from The HDF Group (formerly of NCSA)

• https://www.hdfgroup.org/

• Data Model:

• Hierarchical data organization in single file

• Typed, multidimensional array storage

• Attributes on any HDF5 "object" (dataset, data, groups)

• Features:

• C, C++, Fortran, Java (JNI) interfaces

• Community-supported Python, Lua, R

• Portable data format

• Optional compression (even in parallel I/O mode)

• Chunking: efficient row or column oriented access

• Noncontiguous I/O (memory and file) with hyperslabs

• Parallel HDF5 tutorial:

• https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5

50

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://www.hdfgroup.org/
https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5
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HDF5 Groups and Links

lat | lon | temp
----|-----|-----
 12 |  23 |  3.1
 15 |  24 |  4.2
 17 |  21 |  3.6

Experiment Notes:

Serial Number: 99378920

Date: 3/13/09

Configuration: Standard 3

/

SimOutViz

HDF5 groups and 

links organize data 

objects

51
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DataMetadata

Dataspace

3

Rank

Dim_2 = 5

Dim_1 = 4

Dimensions

Time = 32.4

Pressure = 987

Temp = 56

(optional)

Attributes

Chunked

Compressed

Dim_3 = 7

Properties

Integer           

Datatype

52

HDF5 Dataset
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53
Datatype: 16-byte integer

Dataspace: Rank = 2

 Dimensions = 5 x 3

3

5

V

HDF5 Dataset
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HDF5 Dataspaces 

Two roles:

Dataspace contains spatial information (logical layout) about a dataset stored in a file

• Rank and dimensions

• Permanent part of dataset 
definition

Subsets: Dataspace describes application’s data buffer and data elements participating in 
I/O

Rank = 2

Dimensions = 4x6

Rank = 1

Dimension = 10

54

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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H5Fcreate (H5Fopen)     create (open) File

 H5Screate_simple/H5Screate  create dataspace

   H5Dcreate (H5Dopen)  create (open) Dataset

       H5Sselect_hyperslab    select subsections of data

       H5Dread, H5Dwrite  access Dataset

   H5Dclose   close Dataset

 H5Sclose        close dataSpace

H5Fclose    close File

NOTE: Order not strictly specified

55

Basic Functions 

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility56
code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop 

HDF5 example: opening with MPI-IO

    /* Initialize MPI */

    MPI_Init(&argc, &argv);

    …

    /* Create an HDF5 file access property list */

    fapl_id = H5Pcreate (H5P_FILE_ACCESS);

    

    /* Set file access property list to use the MPI-IO file driver */

    ret = H5Pset_fapl_mpio(fapl_id, MPI_COMM_WORLD, MPI_INFO_NULL);

    /* Create the file collectively */

    file_id = H5Fcreate(argv[1], H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);

    /* Release file access property list */

    ret = H5Pclose(fapl_id);

    

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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HDF5 example: setting up data transfer

/* Select column of elements in the file dataset */

    file_start[0] = 0;       file_start[1] = mpi_rank;

    file_count[0] = DIM0;    file_count[1] = 1;

    ret = H5Sselect_hyperslab(file_space_id, H5S_SELECT_SET,

            file_start, NULL, file_count, NULL);

    

    mem_start[0] = 0;        mem_count[0] = DIM0;

    ret = H5Sselect_hyperslab(mem_space_id, H5S_SELECT_SET,

            mem_start, NULL, mem_count, NULL);

    /* Set up the collective transfer properties list */

    dxpl_id = H5Pcreate(H5P_DATASET_XFER);

    ret = H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE);

    /* Write data (one column of doubles) collectively */

    ret = H5Dwrite(dset_id, H5T_NATIVE_DOUBLE, mem_space_id,

            file_space_id, dxpl_id, write_buf);

D
IM

0

nprocs

…

DIM0 elements

…

MEMORY

FILE

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Effect of HDF5 Tuning

• HDF5 property lists can have big impact on 
internal operations

• Collective I/O vs. Independent I/O

• Huge reduction in operation count

• Implies all processes hit I/O at same time

• Collective metadata (new in 1.10.2)

• Further reduction in op count, especially reads 
(reading HDF5 internal layout information)

• Big implications for performance at scale

58

Operation counts Independent Coll. 

I/O

Coll. MD

POSIX Write 3680007 9 9

MPI-IO Indep write 3680007 7 0

MPI IO Collective 

Write

0 16 48

POSIX Read 3680113 115 10

MPI-IO indep read 3680113 113 8

MPI-IO collective read 0 16 16

Selected Darshan statistics for 16 MPI processes writing 230 K 

doubles to HDF dataset, reading back same.
visualization_io/mpiio-hdf5/hands-on/hdf5/h5par-comparison.c

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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Effect of HDF5 Tuning

• HDF5 property lists can have big impact on 
internal operations

• Collective I/O vs. Independent I/O

• Huge reduction in operation count

• Implies all processes hit I/O at same time

• Collective metadata (new in 1.10.2)

• Further reduction in op count, especially reads 
(reading HDF5 internal layout information)

• Big implications for performance at scale

59

MPI-IO POSIX in
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e

visualization_io/mpiio-hdf5/io-sleuthing/examples/hdf5

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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HDF5 in other languages

• Python:

• H5py:  http://www.h5py.org/  

• closely coupled with mpi4py and numpy;  

• some collective tuning not exposed at python level

• C++:

• Highfive: https://github.com/BlueBrain/HighFive 

• header-only interface to HDF5 C API

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
http://www.h5py.org/
https://github.com/BlueBrain/HighFive
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New HDF5 features:

• New in HDF5-1.14.0

• Async operations

• Potential for background progress

• Multi-dataset I/O

• Similar to pnetcdf “operation combining”
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Data Model I/O libraries

▪ Parallel-NetCDF: http://www.mcs.anl.gov/pnetcdf

▪ HDF5: http://www.hdfgroup.org/HDF5/

▪ NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
– netCDF API with HDF5 back-end

▪ ADIOS: http://adiosapi.org
– Configurable (xml) I/O approaches

▪ SILO: https://wci.llnl.gov/codes/silo/
– A mesh and field library on top of HDF5 (and others)

▪ H5part: http://vis.lbl.gov/Research/AcceleratorSAPP/
– simplified HDF5 API for particle simulations

▪ GIO: https://svn.pnl.gov/gcrm
– Targeting geodesic grids as part of GCRM

▪ PIO:
–  climate-oriented I/O library; supports raw binary, parallel-netcdf, or serial-netcdf (from master)

▪ … Many more: consider existing libs before deciding to make your own.

▪ Note absence of a “machine learning” library – research opportunity for someone!

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
http://www.mcs.anl.gov/pnetcdf
http://www.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://adiosapi.org/
https://wci.llnl.gov/codes/silo/
https://svn.pnl.gov/gcrm
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Wrap-up

• Lots of activity, history making I/O better… Still a lot to do!

• Workflow, task-oriented, AI/ML

• ALCF consultants, research community eager to help

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
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