October 10-12, 2023

‘.

o A

ALCF Hands-on
HPC Workshop

AAAAAAAAAAAAAAAAAA

/O libraries for Parallel Pert

Using and tuning MPI-10 and HDF5

Rob Latham ()
Math and Computer Science
Argonne National Laboratory

mailto:robl@mcs.anl.gov

* 1/O interface specification for use in MPI apps

« Data model is same as POSIX: stream of bytes in a file

» Features many improvements over POSIX:

Collective I/O
Noncontiguous I/O with MPI datatypes and file views
Nonblocking I/O
Fortran bindings (and additional languages)
System for encoding files in a portable format (external32)
* Not self-describing — just a well-defined encoding of types

* Implementations available on most platforms

I 3 Argonne Leadership Computing Facility

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

Argonne &

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

“Hello World” MPI-IO style

/* an "Info object": these store key-value strings for tuning the
* underlying MPI-IO implementation */
MPI_Info_create(&info);

snprintf(buf, BUFSIZE, "Hello from rank %d of %d\n", rank, nprocs); Rank O:

len = strlen(buf); 24 bytes at0

/* We're working with strings here but this approach works well

* whenever amounts of data vary from process to process. */ Rank 1:
MPI_Exscan(&len, &offset, 1, MPI_OFFSET, MPI_SUM, MPI_COMM_WORLD); 24 byteS at 24

MPI_CHECK(MPI_File open(MPI_COMM_WORLD, argv[1],
MPI_MODE_CREATE|MPI_MODE_WRONLY, info, &Ffh));

/* _all means collective. Even if we had no data to write, we would
* still have to make this call. 1In exchange for this coordination, Hello from... Hello from...
* the underlyng library might be able to greatly optimize the I/0 */

MPI_CHECK(MPI File write_at_all(fh, offset, buf, len, MPI_CHAR,

&status));

MPI_CHECK(MPI_File_close(&fh));

4 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneé

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Running on Polaris

#!/bin/bash -1 % cat /eagle/fallwkshp23/${USER}/hello.out
#PBS -A fallwkshp23 Hello from rank © of 32

#PBS -1 walltime=00:10:00 Hello from rank 1 of 32

#PBS -1 select=1 Hello from rank 2 of 32

#PBS -1 place=scatter Hello from rank 3 of 32

#PBS -1 filesystems=home:eagle Hello from rank 4 of 32

#PBS -q debug -

#PBS -N hello-io Hello from rank 29 of 32

#PBS -V Hello from rank 30 of 32

Hello from rank 31 of 32
mkdir -p /eagle/fallwkshp23/${USER}

NNODES=$(wc -1 < $PBS_NODEFILE)
NRANKS_PER_NODE=32

NTOTRANKS=%((NNODES * NRANKS_PER_NODE))
cd $PBS_O_WORKDIR

mpiexec -n $NTOTRANKS --ppn $NRANKS PER_NODE \
./hello-mpiio /eagle/fallwkshp23/${USER}/hello.out

Job submission script Output of “hello-mpiio”

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

5 Argonne Leadership Computing Facility

Argonne &

NATIONAL LABORATORY

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Key takeaways

« Simple example but still captures important concepts
» Info objects: tuning parameters:
« enable/disable optimizations
« Adjust buffer sizes
« Select alternate strategies
« Data placement in file specified by user
« “shared file pointer” possible but not optimized
« Collective vs independent 1/O
« Error checking!!!

I 6 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneb

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

The IOR benchmark

* MPI application benchmark
* reads and writes data in configurable ways
« 1/O pattern can be interleaved or random

* Input:
« transfer size, block size, segment count
* interleaved or random

« Qutput: Bandwidth and IOPS

« Configurable backends
- POSIX, STDIO, MPI-IO
« HDF5, PnetCDF, S3, rados

https://github.com/hpc/ior

segment 1 <

segment 2 —

.

\

|

transfersize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transfersize

transfersize

transfersize

transfersize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

I 7 Argonne Leadership Computing Facility

} block for rank 0
} block for rank 1

o

block forrank2 O

28

=

@)

-]

block for rank 0 i

)
} block for rank 1
} block for rank 2

v

Argonne &

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://github.com/hpc/ior

Hands-on: IOR and stripe size

* For a fixed number of nodes, MPI
processes, block size, and transfer
size...

« Vary the stripe count
* IOR environment variables
« Cray MPI-IO environment variables
e 1fs setstripe

8 Argonne Leadership Computing Facility

$stripe=1
-f ${OUTPUT}/ior-stripe-$stripe.out
export IOR_HINT__MPI__ striping factor=$stripe

rm

#
#

* oH R B OH

-a MPIIO:
-e .
-C
-s
-i
-t
-b

using MPI-IO so we can pass the "striping factor" hint

: fsync after each write phase: push out dirty data to storage

: reorder ranks: read from a different rank than the one that wrote
: segments: each client will write to eight regions

: repeat experiment five times: lots of variability in I/O

: transfer size: how big each request will be

: block size: how big each region will be in the file (needs to

be a multiple of transfer size).

mpiexec -n ${NTOTRANKS} --ppn ${NRANKS_ PER_NODE} \
ior --mpiio.showHints -a MPIIO \
-e -C -s 8 -1 5\
-t 1MiB -b 64MiB -0 ${OUTPUT}/ior-stripe-$stripe.out

00000 11111 22222 pxEE NNNN

code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneé

NATIONAL LABORATORY

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Contention in benchmarkig

Machine
Ideal: 100% of Ineosvi bbuuiy
storage no I(;nger
available for interesting
g benchmarking Reality: have to — boo!
E- share with
[everyone else l
-
@)
O
~—
| | | | | X
I A I ! I |
Installed Acceptance Early Production Retirement

testing Access

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonneé

I 9 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Hands on: IOR and stripe count

IOR performance vs stripe count

Default stripe size is 1 o0 — 128 nodes
= Why? Most files small: optimizing for common case i Read

« “All the servers” doesn’t seem to hurt performance here 80 -
» |fs setstripe -1 /path/to/file

60

« Could go further with “overstriping”
= Didn’t work on Polaris: investigating

* “Where’s my bandwidth?”
= 128 nodes (network links) here 20 1

= Shared file (so | can experiment with stripe count) means
lustre locking overhead/coordination 01

40 -

Bandwidth (GiB)

. {I.'I 2ID 4ID GID BID l[l}{] 12;0 l‘i{} l(ISD
= Graph at right from February 2023 — any changes stripe count
today?

visualization_io/mpiio-hdf5/io-sleuthing/examples/striping

I 10 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneé

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Decomposition

Graphic from J. Tannabhill, LLNL

These regions are then
distributed to cores

(columns) on nodes
(grey boxes) fqr

computation.

T >
o

- AN AN

/

Typical simulations divide up the region belng
simulated into chunks, then group those
chunks into similar amounts of work.

BN [T TT7T1T]
(N Y A A 5 o B
N [[T T T T

N
N

I 11 Argonne Leadership Computing Facility

o \ECTEEEE

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

When speed of
Writing IS the priority,
blobs of data are
written from each
node into individual
files that must then
be post-processed
for analysis.

To prepare data for
analysis, a code
can write in a
canonical view by
processing the
data while it is in
memory, resulting
in a better
organized dataset.

Argonne &

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Contiguous and Noncontiguous 1I/O

« Contiguous I/0O moves data from a single memory block into a
single file region
» Noncontiguous I/O has three forms:
« Noncontiguous in memory
* Noncontiguous in file
* Noncontiguous in both

« Structured data leads naturally to noncontiguous I/O (e.g., Noncontiguous Noncontiguous
block decomposition) in File in Memory

« Describing noncontiguous accesses with a single operation
passes more knowledge to I/O system

I — ™
Vars 0,1, 2, 3, ... 23

B Ghost cell
B Stored element

Extracting variables from a block
and skipping ghost cells will

code etc: https://github.com/argonne-Icf/ALCF Hands on rﬁ?’@t Worr'l?srr‘]?)%’”t'guous U

I 12 Argonne Leadership Computing Facility ArgonnEA

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

/O Transformations

Software between the application and the PFS performs transformations, primarily to improve performance

B Goals of transformations: Process 0 | | Process | Process 2
—Reduce number of I/O operations to PFS ’ % %
(avoid latency, improve bandwidth) NN N A/

— Avoid lock contention (eliminate serialization)
—Hide huge number of clients from PFS
servers
M “Transparent” transformations don't
change the final file layout When we think about /O

: : : transformations, we consider
— File system is still aware of the actual data .
. : the mapping of data between
organization

. : : : application processes and
—File can be later manipulated using serial locations in file
POSIX I/O

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonneﬁ

13 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Request Size and I/O Rate

IOR shared file performance vs request size:
1024 MPI processes, 32 procs per node

Request matches 5500 - - :
Lustre “stripe size”. 5000 -
good performance]
with low variability 4900 .
Q
@ 4000]
a8}
>
Small E 3500 -
deviations 000
from “power %
of two” (e.g. 5 2500 1
(@)
| | 1024k vs <
In general, 1076) can
arger tank » |
requests performance
better. 1000 : : : : : : :

64 128 256 512 1024 2048 4096 8192 16384
Request Blocksize (kilobytes)

Tests run on 1K processes of HPE/Cray Theta at Argonne

I 14 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands on_HPC_Workshop Argonneé

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Reducing Number, Increasing Size of Operations

Because most operations go over the network, I/0 to a PFS incurs more latency than with a

local FS
Data sieving is a technigue to address I/O latency by combining operations:
When reading, application process reads a large region holding all needed data and pulls out what is

needed
* When writing, three steps required (below)

Application Process
Memory
Y Y Y .
Buffer
%tr:T N, *;7;%’ agl R —— HVF
N i
S Y O i O | il I
Step I: Data in region to be Step 2: Elements to be Step 3: Entire region is

written back to storage with

written to file are replaced
a single write operation.

modified are read into
in intermediate buffer.

intermediate buffer (1 read).

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonneé

I 15 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Noncontig with IOR

* |OR can describe access with an MPI datatype
e --mpiio.useStridedDatatype -b .. -s ..

« (buggy in recent versions: use 4.0rc1 or newer)

blocksize segment count: 4
-
| | | |

| | N . https://gi i Argonne &
I 16 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop goNnne s

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Darshan: Characterizing Application I/O

How Is an application using the I/O system?
How successful is it at attaining high performance?

Simplified HPC 1I/O stack
at the application and library

level Aiilication /O access
* What did the application intend to do?

File system access

Strategy: observe I/O behavior

e How much time did it take to do it?

« What can be done to tune and improve? File system
Block access
‘ Storage devices ‘
code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonneé

I 17 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

How does Darshan work?

- Darshan records file access statistics - Application
iIndependently on each process s [HC 3 HDFs
- At app shutdown, collect, aggregate, g2] pEEE wPHO
compress, and write log data 5 | " pE=m Posix /o
+ Alfter job completes, analyze Darshan log data pE=IEE
darshan-parser - prOVIdeS complete text-format reduce / b name POSIX MPLIO HDES Lustre
dump of all counters in a log file compress / header acord records records records records records
PyDarshan - Python analysis module for Darshan write =
logs, including a summary tool for creating HTML = : x - : :
reports = ;

- Originally designed for MPI applications, but in recent Darshan versions (3.2+) any

dynamically-linked executable can be instrumented
> In MPI mode, a log is generated for each app
> In non-MPI mode, a log is generated for each process

> More information: https://docs.alcf.anl.qgov/theta/performance-tools/darshan/ or
Shane’s (concurrent) session

18 Argonne &
18 Argonne Leadership Computing Facility gonnNe =

https://docs.alcf.anl.gov/theta/performance-tools/darshan/

Data Sieving in Practice

Not always a win, particularly for writing:

Enabling data sieving instead made writes slower: why?

Locking to prevent false sharing (not needed for reads)

Multiple processes per node writing simultaneously

Internal ROMIO buffer too small, resulting in write amplification [1]

Comparing noncontiguous |/O optimizations

MPI-10 writes 192
800 4
MPI-IO Reads 0
700 +
— /\ Posix Writes 192000
L]
2 500 4 . Posix Reads 0
E 400 - MPI-IO bytes written 1 920 000 000
=
§ 300 - MPI-IO bytes read 0
200 1 U Posix bytes read 0
1007 [1] Posix bytes written 1 920 000 000
0- . .
data sieving naive Selected Darshan statistics

192

0

192000

192015

1 920 000 000

0

100 039 006 128

100 564 552 704

visualization_io/mpiio-hdf5/io-sleuthing/examples/noncontig

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

Argonne Leadership Computing Facility

Argonne &

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Data Sieving: time line

Top: MPI 1/O call SEXXPLQRER UL s B
describing ¢
noncontiguous -
regions
One MPI I/O
call (top) turnsy
into many
POSIX
operations
(below)
Independent: no
coordination - T T T T T T I
possible. Each B) e B o e S
process does its % : Rl LN e L L S LI LR
own data - T E =
sieving. Gaps 120 — Y " o L. T .. .
between e A B T T R SO S -
operations I R R At ORI SO
show lock
acquisition. _Runm_e i
https://github.com/hpc-io/dxt-explorer Interactive log analysis tool by Jean Luca Bez
I 20 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneé

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://github.com/hpc-io/dxt-explorer

Avoiding Lock Contention

« To avoid lock contention when writing to a shared file, we can reorganize data between
processes

« Two-phase I/O splits I/O into a data reorganization phase and an interaction with the storage system
(two-phase write depicted):

« Data exchanged between processes to match file layout
« 0t phase determines exchange schedule (not shown)

Process 0 Process | Process 2 Process 0 Process | Process 2
Memory [] ' | | H N N HE B B H B B H B N
Buffer B | T
O
Server 0 Server | Server 2 Server| | Sery
1 Y
File (T3 [1] [T} S
Phase |:Data are exchanged between Phase 2: Data are written to file (storage
processes based on organization of data servers) with large writes, no contention.
in file.

I 21 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneé

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Two-Phase I/O Algorithms

Imagine a collective I/O access Offset in File -
using four aggregators to a file CTTT T oo [[[DN [[[DO [[[
striped over four file servers A 4 |
(indicated by colors): Stripe Unit Lock Extent of Accesses

Boundary
One approach is to evenly © Aggregator | | Aggregator2 | Aggregator3 | Aggregator4 !
divide the region accessed L D (T | | S T | [D [[| .

across aggregators. 1T T

Aligning regions with lock > —>

boundaries eliminates lock : ' i
) Aggregator | '+ Aggregator 2 ! regator 3
contention. j - 8 ' 8 | Aggreg

Mapping aggregators to servers
reduces the number of
concurrent operations on a
single server and can be helpful
when locks are handed out on
a per-server basis (e.g., Lustre).

For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective 1/0
Based on Underlying Parallel File System Locking Protocols,” SC2008, November 2008.

22 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneé

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

[1]

Bandwidth (MiB/sec)

Two-phase I/O in Practice

Consistent performance independent of access pattern

Note re-scaled y axis [1]

No write amplification, no read-modify-write
Some network communication but networks are fast

Requires “temporal locality” -- not great if writes “skewed”,

Comparing noncontiguous /O optimizations

imbalanced, or some process enter collective late.
(Yes, those are some “impressive” error bars: investigating with Cray why first iteration so slow)

MPI-10 writes

20000

17500 ~
15000 ~
12500 ~
10000 -
7500 A
5000 A

2500 ~

0

A
\

—

1

MPI-10 Reads
Posix Writes

/ Posix Reads
MPI-10 bytes written
MPI-10 bytes read
Posix bytes read

2]

Posix bytes written

T T
data sieving naive

I 23 Argonne Leadership Computing Facility

collective

0
192000 192000
0 192015

1 920 000 000

0

0 100 039 006 128

1 920 000 000

Selected Darshan statistics

1 920 000 000

100 564 552 704

1832

0

1 920 000 000

0

0

1 920 000 000

visualization_io/mpiio-hdf5/io-sleuthing/examples/noncontig
code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

Argonne &

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HOT OFF THE PRESSES!

» Worked with Cray this week to understand
performance variations

« Found magic environment variable that connects
all the processes to each other on startup, not on
demand

 export MPICH_OFI_STARTUP_CONNECT=1

 Now error bars much more reasonable
 Yay for collaboration

« Explains a few other performance oddities we've
seen

* Only a “feature” of Slingshot-10

24 Argonne Leadership Computing Facility

Bandwidth (MiB/sec)

Comparing noncontiguous |/O optimizations

17500

15000 A

12500

10000

7500 ~

5000 ~

2500 ~

T
data sieving

naive

collective

AAAAAAAAAAAAAAAAAA

Two-phase I/O: time line

Top: collective MPI
I/O call describing
noncontiguous
regions
One
collective

MPI 1/O call £°

per process:

library
transforms
Lustre-specific request.
optimization:
select
processes and
request sizes x
based on file Gaps .
stripe size, between
stripe count. operations
show data
exchange
over
network

200

150

0

S0

200

150

i}

sE

b
Ve

4
N

‘ RER Explore Operation

La /grand/ATPESC2022/usr/robl/ior/ior-noncontig-1000.out
2
]

Olldly

25 Argonne Leadership Computing Facility

XI50d

i BN BN BN

Runtime (seconds)

code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneﬁ

NATIONAL LABORATORY

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Tuning MPI-1O: info objects

* You will likely never need these, but can help in specific situations:
* Both keys and values are strings
* Applicable to all ROMIO-based MPI-10 libraries

Default Value

cb_buffer_size 16777216 An internal buffer for “two phase
i/0”. Bigger value takes away
application memory, but results in
fewer rounds of 1/0

romio_cb_read Enable (on cray) Turn on/off collective i/o: code

romio_cb_write automatic (ROMIO) will fall through to independent
case

romio_no_indep_rw True “deferred open” — only i/o

cb_config_list “*:*” (on Cray) or “*.1” elsewhere aggregators open the file. Open

time not usually dominant factor
unless total I/O moved per file
fairly small

. | N . https://gi i rgonne &
I 26 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop A gOonne

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Tuning MPI-1O: cray-specific hints

» Hints that only work on Cray systems

» Perfectly fine to pass these (or anything) to any MPI library: libraries will ignore hints they don’t
recognize.

« More cray tuning at https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-
variables

Info key Default value

cray_cb_write_lock _mode 0 Set to “2” to try out “lock ahead™:
should allow greater concurrency
cray_cb_nodes_multiplier 1 Depending on stripe size and

number of nodes, “2” or more
might improve performance

. . . Argonne &
27 Argonne Leadership Computing Facility gonnNe =

https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables

Data Model Libraries

« Scientific applications work with structured data and desire more self-describing file formats

* PnetCDF and HDF5 are two popular “higher level” I/O libraries
« Abstract away details of file layout
» Provide standard, portable file formats
* Include metadata describing contents

» For parallel machines, these use MPI and probably MPI-10

 MPI-IO implementations are sometimes poor on specific platforms, in which case libraries might directly
call POSIX calls instead

I 28 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneé

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

The Parallel netCDF Interface and File Format

« Thanks to Wei-Keng Liao, Alok Choudhary, and Kaiyuan Hou (NWU) for their
help in the development of PnetCDF.

» https://parallel-netcdf.github.io/

. . - Argonne &
29 Argonne Leadership Computing Facility

https://parallel-netcdf.github.io/

Parallel NetCDF (PnetCDF)

Based on original “Network Common Data Format” (netCDF) work from Unidata
« Derived from their source code

Data Model:
» Collection of variables in single file
« Typed, multidimensional array variables
« Attributes on file and variables

* Features:
« C, Fortran, and F90 interfaces (no python)
« Portable data format (identical to netCDF)
* Noncontiguous I/O in memory using MPI datatypes
* Noncontiguous /O in file using sub-arrays
« Collective I/O
* Non-blocking 1/0

 Unrelated to netCDF-4 work

e Parallel-NetCDF tutorial:
e https://parallel-netcdf.github.io/wiki/QuickTutorial.html

* Interface guide:

* http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html
* ‘man pnetcdf’ on polaris (after loading module)

30 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneb

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://parallel-netcdf.github.io/wiki/QuickTutorial.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html

Parallel netCDF (PnetCDF)

« (Serial) netCDF Cluster
« API for accessing multi-dimensional data sets
« Portable file format PnetCDF

* Popular in both fusion and climate communities

ROMIO

« Parallel netCDF
« Very similar API to netCDF Lustre
* Tuned for better performance in today’s computing environments
» Retains the file format so netCDF and PnetCDF applications can share files
« PnetCDF builds on top of any MPI-IO implementation IBM AC922 (Summit)

PnetCDF

Spectrum-MPI

GPFS

Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneé

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

netCDF Data Model

« The netCDF model provides a means for storing multiple,
multi-dimensional arrays in a single file.

Application Data Structures

Double temp

.
< R R
- -

26

Float surface_pressure

512
—

12

32 Argonne Leadership Computing Facility

netCDF File "checkpoint07.nc"

Variable "temp" {
type = NC_DOUBLE,
dims = {1024, 1024, 26},
start offset = 65536,
attributes = {"Units" = "K"}}

Variable "surface_pressure" {
type = NC_FLOAT,
dims = {512, 512},
start offset = 218103808,
attributes = {"Units" = "Pa"}}

ClIERNIREN g

< Data for "temp" >

< Data for "surface_pressure" >

V//_L

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

netCDF header describes
the contents of the file:
typed, multi-dimensional
variables and attributes

on variables or the dataset
itself.

Data for variables is stored
in contiguous blocks,
encoded in a portable binary
format according to the
variable's type.

Argonne &

NATIONAL LABORATORY

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Record Variables in netCDF

* Record variables are defined to have a single } netCDF Header
“unlimited” dimension E Ist non-record variable
 Convenient when a dimension size i1s unknown at time o 9nd non-record variable
of variable creation a1
014 ~y
. e It
* Record variables are stored after all the other 9
variables in an interleaved format ~||| mth non-record variable
« Using more than one in a file is likely to result in poor ' 1‘: RR: : ;; RR: :ﬂf
performance due to number of noncontiguous accesses S AL
E 1zt Record for rth Eecord Var
i
':{ 2nd Record for 1st,
-E. Znd, ..., rth Record
S Variables 1n order
L
= P Al
E____£E_____?
Eecords grow in the THLINITED
. dimension for 1,2,..., rth war
I 33 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneb

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Pre-declaring 1/O

* netCDF / Parallel-NetCDF: bimodal write interface
« Define mode: “here are my dimensions, variables, and attributes”
« Data mode: “now I'm writing out those values”

» Decoupling of description and execution shows up several places
* MPI non-blocking communication
« Parallel-NetCDF “write combining” (talk more in a few slides)
« MPI datatypes to a collective routines (if you squint really hard)

. . N : Jlai] Argonne &
I 34 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop goe

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HANDS-ON: writing with Parallel-NetCDF

2-D array in file, each rank writes "YDIM’ (1) rows

Many details managed by pnetcdf library
MPI-10 File views
« offsets

Be mindful of define/data mode: call ncmpi_enddef ()

Library will take care of header i/o for you
1. Define two dimensions
* ncmpi_def dim()
2. Define one variable
* ncmpi_def var()
3. Collectively put variable
. ncmpi put vara int all()
. ‘start’ and ‘count’ arrays: each process selects different regions

4. Check your work with ‘ncdump <filename>’
. Hey look at that: serial tool reading parallel-written data: interoperability at work

I 35 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneé

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Solution fragments for Hands-on

Defining dimension: give name, size; get ID
/* row-major ordering */
NC CHECK (ncmpi def dim(ncfile, , YDIM*nprocs, & (dims[0])))
NC_CHECK(ncmpi_def_dim(ncfile, , XDIM, & (dims[1])))

Defining variable: give name, “rank” and dimensions (id); get ID
Attributes: can be placed globally, on variables, dimensions

NC CHECK (ncmpi def var (ncfile, , NC INT, NDIMS, dims,
&varid array));

10 11 12 13

20 21 22 23
iterations=1;

NC CHECK (ncmpi put att int(ncfile, varid array,
, NC INT, 1, &iterations));

I/O: ‘start’ and ‘count’ give location, shape of subarray. ‘All’ means collective

start[0] = rank*YDIM; start[l] = 0;
count [0] = YDIM; count[l] = XDIM;
NC CHECK (ncmpi put vara int all(ncfile, varid array, start, count, values));
Full example in visualization_io/mpiio-hdf5/hands-on/array
code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneﬁ

36 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Inside PnetCDF Define Mode

 In define mode (collective)
« Use MPI_F1ile_open to create file at create time
« Set hints as appropriate (more later)

« Locally cache header information in memory
» All changes are made to local copies at each process

« At ncmpi_enddef
 Process 0 writes header with MPI_F1ile_write_at
e MPI_Bcast resultto others

« Everyone has header data in memory, understands placement of all variables
* No need for any additional header I/O during data mode!

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonneé

I 37 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Inside PnetCDF Data Mode

B Inside ncmpi_put_vara_all (once per variable)

— Each process performs data conversion into internal buffer
— Uses MPI_F1le_set_view to define file region
— MPI_File_write_all collectively writes data

B At ncmpi_close
— MPI_F1ile_close ensures data is written to storage

B MPI-10 performs optimizations
— Two-phase possibly applied when writing variables

B MPI-IO makes PFS calls
— PFS client code communicates with servers and stores data

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonneé

38 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Inside PnetCDF:. Darshan heatmap analysis

IOR writing Parallel-NetCDF (see visualization_io/mpiio-hdf5/hands-on/ior/polaris/ior-pnetcdf.sh)

MPI-10 [1]

POSIX
125 4 = 10° 125 4 anlil. ‘ 107
= 10.5 :|.C'6
100+ = o 100 I .
5 10‘“; 105.§
& | = 5 —— - F o
50 =) * 50 :10°
= 1% -
25 1 = - = |—— £10%0
- 2] [3]
0 | ==) [2] o) :
S S o S Time bins: 200 o © N = 3 Time bins: 200
° Time (s) ° °© o Time () o o
[1]: all processes call MPI1 write and read — re-reading going to be fast (cached)
[2]: one process wrote header -- small: just one pixel in POSIX
[3]: what you don'’t see — only “aggregators” actually do 1/0O
39 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneb

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HANDS-ON: reading with pnetcdf

« Similar to MPI-IO reader: just read one row
« Operate on netcdf arrays, not MPI datatypes

« Shortcut: can rely on “convention”
* One could know nothing about file as in previous slide

* In our case we know there’s a variable called “array” (id of 0) and an attribute called
“iteration”

* Routines you'll need:
* ncmpi_ing_dim to turn dimension id to dimension length
* ncmpi _get att int to read “iteration” attribute
* ncmpi_get vara_int_all to read column of array

<—— Nprocs ——

. . - . hitps://qi : nne &
I 40 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argoe

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Solution fragments: reading with pnetcdf

Making inquiry about variable, dimensions

NC CHECK (ncmpi ing var (ncfile, 0, varname, &vartype, &nr dims,

dim ids, &nr attrs));
NC CHECK (ncmpi ing dim(ncfile, dim ids[0], NULL, &(dim lens[O0])));
NC CHECK (ncmpi ing dim(ncfile, dim ids[1l], NULL, &(dim lens[1])));

The “lteration” attribute

NC CHECK (ncmpi get att int(ncfile, O, , <erations));

No file views or datatypes: just a starting coordinate and size — everyone reads same slice in this case

count [0] = dim lens[0]; count[l] = 1;
starts[0] = 0; starts[1l] = XDIM/2;
NC CHECK (ncmpi get vara int all (ncfile, 0, starts, count, read buf));

. . . Argonne &
41 Argonne Leadership Computing Facility gonnNe =

Parallel-NetCDF write-combining optimization

ncmpi iput vara(ncfile, varidl, &start, &count, &data,
count, MPI INT, &requests([0]);

ncmpi wait all(ncfile, 2, requests, statuses);

* netCDF variables laid out contiguously
« Applications typically store data in separate variables

_ « temperature(lat, long, elevation)

* Velocity x(x, Y, z, timestep)

HEADER VAR1 VAR?2 « Operations posted independently, completed

collectively
‘ » Defer, coalesce synchronization

 Increase average request size

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonneé

I 42 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Example: FLASH Astrophysics

 FLASH is an astrophysics code for
studying events such as supernovae
« Adaptive-mesh hydrodynamics
« Scales to 1000s of processors
« MPI for communication

 Frequently checkpoints:

« Large blocks of typed variables
from all processes

 Portable format

« Canonical ordering (different than
In memory)

« Skipping ghost cells

Vars 0,1, 2, 3, ... 23

B Ghost cell
B Stored element

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonneﬁ

I 43 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

[[[] [[] [
.' " 'I @, I. " " 'l. " |. |. " .' " ll.
A /Y / A /] A

« FLASH writes one variable at a time

 Could combine all 4D variables FLASH checkpont 1/0
(temperature, pressure, etc) into one 5D [l TP rr— ' ' -l
Va“able 7 FMonblocking e

« Altered file format (conventions) requires
updating entire analysis toolchain

« Write-combining provides improved
performance with same file conventions 4.

« Larger requests, less synchronization.

GBAsec

3 r— '“‘-..__-----..___-;
. o

40396 g13z2 163584 J2768 65536

npracs
code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonneé

44 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HANDS-ON: pnetcdf write-combining

1. Define a second variable, changing only the name
2. Write this second variable to the netcdf file

3. Convert to the non-blocking interface (ncmpi_iput vara int)
. not collective — “collectiveness” happens in ncmpi_wait all
. takes an additional ‘request’ argument

4. Wait (collectively) for completion

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonneé

I 45 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Solution fragments for write-combining

Defining a second variable

NC CHECK (ncmpi def var (ncfile, , NC INT, NDIMS, dims,
&varid array));
NC CHECK (ncmpi def var (ncfile, , NC INT, NDIMS, dims,

&varid other));

The non-blocking interface: looks a lot like MPI

NC CHECK (ncmpi iput vara int(ncfile, varid array, start, count,

values, &(regs[0])));
NC CHECK(ncmpi iput vara int(ncfile, varid other, start, count,
values, &(regs([1l]))):

Waiting for I/O to complete

/* all the I/0 actually happens here */
NC CHECK (ncmpi wait all(ncfile, 2, regs, status));

| | N . https://gi i Argonne &
46 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop goNnne s

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Hands-on continued

» Look at the darshan output. Compare to darshan output for single-variable writing or reading
* Results on polaris surprised me: vendor might know something | don’t
* Maybe some kind of small-io optimization?

I 47 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands on_HPC_Workshop Argonneé

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

PnetCDF Wrap-Up

* PnetCDF gives us
« Simple, portable, self-describing container for data

« Collective IO
« Data structures closely mapping to the variables described

 If PnetCDF meets application needs, it is likely to give good performance
« Type conversion to portable format does add overhead

« Some limits on (old, common CDF-2) file format:
 Fixed-size variable: <4 GiB
 Per-record size of record variable: < 4 GiB

e 232-1records
Contributed extended file format to relax these limits (CDF-5, released in pnetcdf-1.1.0,
November 2009, integrated in Unidata NetCDF-4.4)

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonneé

I 48 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

The HDF5 Interface and
File Format

I

. i _ ™ Ar Onnea
code etc: https://github.com/argonne-Icf/ALCF_Hands on_HPC_Workshop The HDF Group gONNE &%

49 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

I 50 Argonne Leadership Computing Facility

Hierarchical Data Format, from The HDF Group (formerly of NCSA)
« https://www.hdfgroup.org/

Data Model:
« Hierarchical data organization in single file
* Typed, multidimensional array storage
« Attributes on any HDF5 "object" (dataset, data, groups)

Features:
 C, C++, Fortran, Java (JNI) interfaces
« Community-supported Python, Lua, R
« Portable data format
» Optional compression (even in parallel /O mode)
« Chunking: efficient row or column oriented access
* Noncontiguous I/0 (memory and filej with hyperslabs

Parallel HDF5 tutorial:
* https://portal.hdfgroup.org/display/HDFE5/Introduction+to+Parallel+HDF5

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

LN
g g |
The HDF Group

Argonne &

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://www.hdfgroup.org/
https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5

HDF5 Groups and Links

HDF5 groups and
links organize datac . .—" /

Serial Number: 99378920
Date: 3/13/09

O bj e Cts Configuration: Standard 3

Viz \

[ats|Hontemp)

51 Argonne Leadership Computing Facility

SimOut

(B ¥ e
i
The HDF Group

uuuuuuuuuuuuuuuuuu

HDF5 Dataset

Rank

Datatype

LRI
/1

: . . Argonne &
52 Argonne Leadership Computing Facility The HDF Group

HDF5 Dataset

<

N
i

Datatype: 16-byte integer

Q

Dataspace: Rank =2

Dimensions =5 x 3

L=
s

Argonne &
53 Argonne Leadership Computing Facility The HDF Group gonnes

HDFS Dataspaces

Two roles:
Dataspace contains spatial information (logical layout) about a dataset stored in a file
 Rank and dimensions

« Permanent part of dataset
definition

Rank = 2

Dimensions = 4x6
Subsets: Dataspace describes application’s data butter and data elements participating in

1/O

i
| | | | | | | | | Dimension = 10

i A -5
54 Argonne Leadﬁm%ygng Facility code etc: https:/github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop rgonne &%

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Basic Functions

H5Fcreate (H5Fopen) create (open) File
H5Screate simple/H5Screate create dataspace
H5Dcreate (H5Dopen) create (open) Dataset
H5Sselect _hyperslab select subsections of data
H5Dread, H5Dwrite access Dataset
H5Dclose close Dataset
H5Sclose close dataSpace
H5Fclose close File

I NOTE: Order not strictly specified L\

: s
code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC Workshop The HDF Group Argonneé

55 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HDF5 example: opening with MPI-10

/* Initialize MPI */
MPI_Init(&argc, &argv);

/* Create an HDF5 file access property list */
fapl _id = HS5Pcreate (H5P_FILE ACCESS);

/* Set file access property list to use the MPI-IO file driver */
ret = H5Pset fapl mpio(fapl id, MPI_COMM WORLD, MPI INFO NULL);

/* Create the file collectively */
file id = HS5Fcreate(argv[1l], H5F_ACC_TRUNC, H5P _DEFAULT, fapl id);

/* Release file access property list */
ret = H5Pclose(fapl _id);

I 56 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneb

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HDF5 example: setting up data transfer

, , MEMORY

/* Select column of elements in the file dataset */

file start[0] = 0; file start[1] = mpi_rank; _ .

file count[@] = DIMO; file count[1l] = 1;

ret = H5Sselect _hyperslab(file space id, H5S_SELECT SET, DIMO elements
file start, NULL, file_count, NULL);

FILE
mem_start[0] = O; mem_count[©] = DIM@;

ret = H5Sselect hyperslab(mem space_id, H5S SELECT_SET,
mem_start, NULL, mem_count, NULL);

nprocs

/* Set up the collective transfer properties list */
dxpl_id = H5Pcreate(H5P_DATASET XFER);
ret = H5Pset_dxpl mpio(dxpl_id, HSFD_MPIO COLLECTIVE);

DIMO ———

/* Write data (one column of doubles) collectively */
ret = H5Dwrite(dset id, H5T NATIVE DOUBLE, mem_space_ id,
file space_id, dxpl_id, write buf);

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonneﬁ

57 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Effect of HDF5 Tuning

Internal operations o

POSIX Write 3680007
_ MPI-IO Indep write 3680007 7 0
« Collective I/O vs. Independent I/O
* Huge reduction in operation count MPI IO Collective 0 16 48
» Implies all processes hit I/O at same time Write
POSIX Read 3680113 115 10
« Collective metadata (new in 1.10.2) MPI-I0 indep read 3680113 113 3
» Further reduction in op count, especially reads
(reading HDF5 internal layout information) _
MPI-10 collective read 0 16 16

« Big implications for performance at scale

Selected Darshan statistics for 16 MPI processes writing 230 K

doubles to HDF dataset, reading back same.
visualization_io/mpiio-hdf5/hands-on/hdf5/h5par-comparison.c

A -5
. , . : Jlai - reonn
58 Argonne Leadﬁfmng Facility code etc: https://github.com/argonne-Icf/ALCF_Hands on_HPC_Workshop goNnne s

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Effect of HDF5 Tuning

« HDF5 property lists can have big impact on

internal operations

» Collective I/O vs. Independent I/O
* Huge reduction in operation count
« Implies all processes hit I/O at same time

>
Data (B): read, write

Juapuadapul

» Collective metadata (new in 1.10.2)

» Further reduction in op count, especially reads |
(reading HDF5 internal layout information)

« Big implications for performance at scale

(B ¥
59 Argonne Leadership Gﬂm%wty

187 4

132 4
66 - s
[
T T 0 . ; I
o =] o o Time bins: 156 o =] — &4 Time bins: 156
Time (s) Time (s)

Rank
= - - =
< 2 2 <
Data (B): read, write
Rank
- = r w
o o @ &5 =
o N ~ w o
L N s n
e
- e L
- = =
= =) o
Data (B). d, write

visualization_io/mpiio-hdf5/io-sleuthing/examples/hdf5

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonneé

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HDF5 in other languages

» Python:
« Hb5py: http://www.h5py.org/
« closely coupled with mpidpy and numpy;
« some collective tuning not exposed at python level

e C++;
« Highfive: https://github.com/BlueBrain/HighFive
» header-only interface to HDF5 C API

I 60 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneb

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
http://www.h5py.org/
https://github.com/BlueBrain/HighFive

New HDF5 features:

* New in HDF5-1.14.0
« Async operations
» Potential for background progress
« Multi-dataset 1/0
« Similar to pnetcdf “operation combining”

61 Argonne Leadership Computing Facility

uuuuuuuuuuuuuuuuuu

Data Model I/O libraries

= Parallel-NetCDF: http://www.mcs.anl.gov/pnetcdf
= HDF5: http://www.hdfgroup.org/HDF5/

= NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
— netCDF API with HDF5 back-end

= ADIOS: http://adiosapi.org
— Configurable (xml) I/O approaches

= SILO: https://wci.linl.gov/codes/silo/
— A mesh and field library on top of HDF5 (and others)

= Hb5part: http://vis.lbl.gov/Research/AcceleratorSAPP/
— simplified HDF5 API for particle simulations

= GIO: https://svn.pnl.gov/gcrm
— Targeting geodesic grids as part of GCRM

= PIO:
— climate-oriented /O library; supports raw binary, parallel-netcdf, or serial-netcdf (from master)

= ... Many more: consider existing libs before deciding to make your own.
= Note absence of a “machine learning” library — research opportunity for someone!

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonneé

62 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
http://www.mcs.anl.gov/pnetcdf
http://www.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://adiosapi.org/
https://wci.llnl.gov/codes/silo/
https://svn.pnl.gov/gcrm

» Lots of activity, history making I/O better... Still a lot to do!
« Workflow, task-oriented, Al/ML

* ALCF consultants, research community eager to help

| | N . https://gi i Argonne &
I 63 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop goNnne s

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

	Slide 1
	Slide 2: I/O libraries for Parallel Perf
	Slide 3: MPI-IO
	Slide 4: “Hello World” MPI-IO style
	Slide 5: Running on Polaris
	Slide 6: Key takeaways
	Slide 7: The IOR benchmark
	Slide 8: Hands-on: IOR and stripe size
	Slide 9: Contention in benchmarkig
	Slide 10: Hands on: IOR and stripe count
	Slide 11: Decomposition
	Slide 12: Contiguous and Noncontiguous I/O
	Slide 13: I/O Transformations
	Slide 14: Request Size and I/O Rate
	Slide 15: Reducing Number, Increasing Size of Operations
	Slide 16: Noncontig with IOR
	Slide 17: Darshan: Characterizing Application I/O
	Slide 18: How does Darshan work?
	Slide 19: Data Sieving in Practice
	Slide 20: Data Sieving: time line
	Slide 21: Avoiding Lock Contention
	Slide 22: Two-Phase I/O Algorithms
	Slide 23: Two-phase I/O in Practice
	Slide 24: HOT OFF THE PRESSES!
	Slide 25: Two-phase I/O: time line
	Slide 26: Tuning MPI-IO: info objects
	Slide 27: Tuning MPI-IO: cray-specific hints
	Slide 28: Data Model Libraries
	Slide 29: The Parallel netCDF Interface and File Format
	Slide 30: Parallel NetCDF (PnetCDF)
	Slide 31: Parallel netCDF (PnetCDF)
	Slide 32: netCDF Data Model
	Slide 33: Record Variables in netCDF
	Slide 34: Pre-declaring I/O
	Slide 35: HANDS-ON: writing with Parallel-NetCDF
	Slide 36: Solution fragments for Hands-on
	Slide 37: Inside PnetCDF Define Mode
	Slide 38: Inside PnetCDF Data Mode
	Slide 39: Inside PnetCDF: Darshan heatmap analysis
	Slide 40: HANDS-ON: reading with pnetcdf
	Slide 41: Solution fragments: reading with pnetcdf
	Slide 42: Parallel-NetCDF write-combining optimization
	Slide 43: Example: FLASH Astrophysics
	Slide 44: FLASH Astrophysics and the write-combining optimization
	Slide 45: HANDS-ON: pnetcdf write-combining
	Slide 46: Solution fragments for write-combining
	Slide 47: Hands-on continued
	Slide 48: PnetCDF Wrap-Up
	Slide 49:
	Slide 50: HDF5
	Slide 51: HDF5 Groups and Links
	Slide 52
	Slide 53: HDF5 Dataset
	Slide 54: HDF5 Dataspaces
	Slide 55: Basic Functions
	Slide 56: HDF5 example: opening with MPI-IO
	Slide 57: HDF5 example: setting up data transfer
	Slide 58: Effect of HDF5 Tuning
	Slide 59: Effect of HDF5 Tuning
	Slide 60: HDF5 in other languages
	Slide 61: New HDF5 features:
	Slide 62: Data Model I/O libraries
	Slide 63: Wrap-up

