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Agenda

• Access Intel Data Center MAX GPUs using Intel Developer Cloud

• Intel GPU Optimization using SYCL

• Unified Shared Memory vs Buffer Memory Model

• Optimizing techniques for Buffer Memory Model

• Optimizing techniques for Unified Shared Memory Model
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Learning Objectives

• Access Intel Data Center GPU MAX using Intel Developer 
Cloud

• Understand Buffer Memory Model vs Unified Shared 
Memory Model

• Optimize memory copies by using proper Accessor 
permissions and properties

• Optimize memory copies by overlapping copies and 
executions.
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SYCL Memory Model

SYCL offers several choices for managing memory on the device.

• Buffer Memory Model - A buffer is a container for data that can be 
accessed from a device and the host. The SYCL runtime manages 
memory by providing APIs for allocating, reading and writing 
memory. 

• Unified Shared Memory Model (USM) - USM allows reading and 
writing of data with conventional pointers. You have choice of 
explicitly moving memory or let the runtime move memory 
implicitly.
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SYCL Buffers Method
Buffer Memory Model with buffer created for data, and accessor for accessing 
data on device, and host_accessor to copy back the data from device to host. 

sycl::queue q;

int data[N];

for(int i=0;i<N;i++) data[i] = 10;

    sycl::buffer buf(data, sycl::range<1>(N));

    q.submit([&] (handler &h){

        sycl::accessor A(buf, h);

        h.parallel_for(N, [=](auto i){

            A[i] += 1;

        });

    });

sycl::host_accessor ha(buf, sycl::read_only);

for(int i=0;i<N;i++) std::cout << data[i] << " ";

Create buffer

Create accessor

Host memory setup

Device can modify

Host has output

Host can  initialize

Host Accessor
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Unified Shared Memory – Implicit Movement

malloc_shared enables accessing memory on the host and device with same 
pointer reference, memory movement happens implicitly.

sycl::queue q;

auto data = sycl::malloc_shared<int>(N, q);

for(int i=0;i<N;i++) data[i] = 10;

q.parallel_for(N, [=](auto i){

data[i] += 1;

}).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

sycl::free(data, q);

Host can  initialize

Device can modify

Host has output

Setup Unified 
Shared Memory
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Unified Shared Memory – Explicit Movement

malloc_device enables allocating memory on the device, and memory should be 
copied explicitly between host and device using memcpy method.

sycl::queue q;

int data[N];

for(int i=0;i<N;i++) data[i] = 10;

auto data_device = sycl::malloc_device<int>(N, q);

q.memcpy(data_device, data, sizeof(int) * N).wait();

q.parallel_for(N, [=](auto i){

data_device[i] += 1;

}).wait();

q.memcpy(data, data_device, sizeof(int) * N).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

sycl::free(data, q);

Host to Device copy

Device can modify

Device to Host copy

Unified Shared 
Memory Setup
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Which SYCL Memory Model should I use?

SYCL Buffers are powerful and elegant
• Use if the abstraction applies cleanly in your application, and/or buffers aren’t 

disruptive to your development

• Useful when computations use with 2 or 3-dimensional data representations

USM provides a familiar pointer-based C++ interface
• Useful when porting C++ code to SYCL, by minimizing changes

• Use shared allocations when porting code, to get functional quickly

• Note that shared allocation is not intended to provide peak performance out of box

• Use explicit USM allocations when controlled data movement is needed
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Hand-on Workshop

• Intel GPU Optimization using SYCL

• Buffers vs USM

• Optimization Techniques for Buffers

• Optimization Techniques for USM



10SYCL Essentials

Optimization Techniques for Buffers

• Accessor access modes are very important to set to avoid 

unnecessary copies.

• Use sycl::no_init, if output buffer is write_only and initial data is not 

required in kernel computation.

• Avoid declaring buffers in loops.

• Avoid copying data back and forth between host and device.
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Optimization Techniques for USM

• If possible, chunk data to allocate, copy and submit kernels for 

multiple chucks to overlap copies and computations.

• Use sycl::malloc_host for allocation on hosts and then copy to 

device allocations.

• Copy back only sections of data that is modified by device.
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Resources

• SYCL Essentials training modules: 

• https://github.com/oneapi-src/oneAPI-

samples/tree/master/DirectProgramming/DPC%2B%2B/Jupyter/oneapi-essentials-training

• Intel GPU Optimization Guide:

• https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-

guide/top.html

• SYCL Code Samples:

• https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/DPC%2B%2B

https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/DPC%2B%2B/Jupyter/oneapi-essentials-training
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/DPC%2B%2B/Jupyter/oneapi-essentials-training
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top.html
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/DPC%2B%2B
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Resources

• Download and Install Intel oneAPI Compiler, Libraries and Tools:

• https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html

• Build open source SYCL compiler:

• https://github.com/intel/llvm

• SYCL Specification:

• https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html
https://github.com/intel/llvm
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
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Intel Data Center GPU MAX Series 

Intel’s highest performing, highest density, general-purpose discrete 
GPU, which packs over 100 billion transistors into one package
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Xe Core
Building block of GPU with 8 vector engines, 8 matrix engines, SLM/L1 Cache
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Xe Stack
Up to 4 Xe-Slices, Media Engine, L2 Cache, Memory Controllers, Xe-Links
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2 Xe Stack
GPU with multiple Xe-Stack
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Xe-HPC Architecture

• The Compute building block of the Xe HPC-based GPU is the Xe-
Core consisting of 8 vector engines.
• (Vector Engine formerly referred to as Execution-Units/EU, Xe-Core formerly referred to as 

Sub-Slice in Gen9/Gen11 Graphics HW)

• 16 Xe-Cores with a hardware context make up a Xe-Slice

• Up to 4 Xe-Slice makes Xe-Stack (with up to 64 Xe-Cores)

• 1 or more Xe-Stacks can be present in GPU
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Intel Data Center GPU MAX Series 

Intel® Data Center GPU Max Series Overview

Available today:

• Intel® Data Center GPU Max 1100 (56 Xe Cores)

• Intel® Data Center GPU Max 1550 (128 Xe Cores)

https://www.intel.com/content/www/us/en/products/details/discrete-gpus/data-center-gpu/max-series.html
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Intel Developer Cloud

Intel® Developer Cloud is a service platform for developing and 
running workloads in Intel®-optimized deployment environments with 
the latest Intel® processors, Intel® GPUs and performance-optimized 
software stacks.

• Sign-up for free

• cloud.intel.com

https://www.intel.com/content/www/us/en/developer/tools/devcloud/services.html
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Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

© Intel Corporation.  Intel, the Intel logo, and other Intel marks are trademarks of Intel 

Corporation or its subsidiaries.  Other names and brands may be claimed as the property 

of others.  
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