
Memory Allocation and Memory Movement
Intel GPU Optimization Guide

Learn about Optimizing Memory Allocation and Memory Movement

rakshith.Krishnappa@intel.com

2SYCL Essentials

Agenda

• Access Intel Data Center MAX GPUs using Intel Developer Cloud

• Intel GPU Optimization using SYCL

• Unified Shared Memory vs Buffer Memory Model

• Optimizing techniques for Buffer Memory Model

• Optimizing techniques for Unified Shared Memory Model

3SYCL Essentials

Learning Objectives

• Access Intel Data Center GPU MAX using Intel Developer
Cloud

• Understand Buffer Memory Model vs Unified Shared
Memory Model

• Optimize memory copies by using proper Accessor
permissions and properties

• Optimize memory copies by overlapping copies and
executions.

4SYCL Essentials

SYCL Memory Model

SYCL offers several choices for managing memory on the device.

• Buffer Memory Model - A buffer is a container for data that can be
accessed from a device and the host. The SYCL runtime manages
memory by providing APIs for allocating, reading and writing
memory.

• Unified Shared Memory Model (USM) - USM allows reading and
writing of data with conventional pointers. You have choice of
explicitly moving memory or let the runtime move memory
implicitly.

5SYCL Essentials

SYCL Buffers Method
Buffer Memory Model with buffer created for data, and accessor for accessing
data on device, and host_accessor to copy back the data from device to host.

sycl::queue q;

int data[N];

for(int i=0;i<N;i++) data[i] = 10;

 sycl::buffer buf(data, sycl::range<1>(N));

 q.submit([&] (handler &h){

 sycl::accessor A(buf, h);

 h.parallel_for(N, [=](auto i){

 A[i] += 1;

 });

 });

sycl::host_accessor ha(buf, sycl::read_only);

for(int i=0;i<N;i++) std::cout << data[i] << " ";

Create buffer

Create accessor

Host memory setup

Device can modify

Host has output

Host can initialize

Host Accessor

6SYCL Essentials

Unified Shared Memory – Implicit Movement

malloc_shared enables accessing memory on the host and device with same
pointer reference, memory movement happens implicitly.

sycl::queue q;

auto data = sycl::malloc_shared<int>(N, q);

for(int i=0;i<N;i++) data[i] = 10;

q.parallel_for(N, [=](auto i){

data[i] += 1;

}).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

sycl::free(data, q);

Host can initialize

Device can modify

Host has output

Setup Unified
Shared Memory

7SYCL Essentials

Unified Shared Memory – Explicit Movement

malloc_device enables allocating memory on the device, and memory should be
copied explicitly between host and device using memcpy method.

sycl::queue q;

int data[N];

for(int i=0;i<N;i++) data[i] = 10;

auto data_device = sycl::malloc_device<int>(N, q);

q.memcpy(data_device, data, sizeof(int) * N).wait();

q.parallel_for(N, [=](auto i){

data_device[i] += 1;

}).wait();

q.memcpy(data, data_device, sizeof(int) * N).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

sycl::free(data, q);

Host to Device copy

Device can modify

Device to Host copy

Unified Shared
Memory Setup

8SYCL Essentials

Which SYCL Memory Model should I use?

SYCL Buffers are powerful and elegant
• Use if the abstraction applies cleanly in your application, and/or buffers aren’t

disruptive to your development

• Useful when computations use with 2 or 3-dimensional data representations

USM provides a familiar pointer-based C++ interface
• Useful when porting C++ code to SYCL, by minimizing changes

• Use shared allocations when porting code, to get functional quickly

• Note that shared allocation is not intended to provide peak performance out of box

• Use explicit USM allocations when controlled data movement is needed

9SYCL Essentials

Hand-on Workshop

• Intel GPU Optimization using SYCL

• Buffers vs USM

• Optimization Techniques for Buffers

• Optimization Techniques for USM

10SYCL Essentials

Optimization Techniques for Buffers

• Accessor access modes are very important to set to avoid

unnecessary copies.

• Use sycl::no_init, if output buffer is write_only and initial data is not

required in kernel computation.

• Avoid declaring buffers in loops.

• Avoid copying data back and forth between host and device.

11SYCL Essentials

Optimization Techniques for USM

• If possible, chunk data to allocate, copy and submit kernels for

multiple chucks to overlap copies and computations.

• Use sycl::malloc_host for allocation on hosts and then copy to

device allocations.

• Copy back only sections of data that is modified by device.

12SYCL Essentials

Resources

• SYCL Essentials training modules:

• https://github.com/oneapi-src/oneAPI-

samples/tree/master/DirectProgramming/DPC%2B%2B/Jupyter/oneapi-essentials-training

• Intel GPU Optimization Guide:

• https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-

guide/top.html

• SYCL Code Samples:

• https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/DPC%2B%2B

https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/DPC%2B%2B/Jupyter/oneapi-essentials-training
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/DPC%2B%2B/Jupyter/oneapi-essentials-training
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top.html
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/DPC%2B%2B

13SYCL Essentials

Resources

• Download and Install Intel oneAPI Compiler, Libraries and Tools:

• https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html

• Build open source SYCL compiler:

• https://github.com/intel/llvm

• SYCL Specification:

• https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html
https://github.com/intel/llvm
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

14SYCL Essentials

Intel Data Center GPU MAX Series

Intel’s highest performing, highest density, general-purpose discrete
GPU, which packs over 100 billion transistors into one package

15SYCL Essentials

Xe Core
Building block of GPU with 8 vector engines, 8 matrix engines, SLM/L1 Cache

16SYCL Essentials

Xe Stack
Up to 4 Xe-Slices, Media Engine, L2 Cache, Memory Controllers, Xe-Links

17SYCL Essentials

2 Xe Stack
GPU with multiple Xe-Stack

18SYCL Essentials

Xe-HPC Architecture

• The Compute building block of the Xe HPC-based GPU is the Xe-
Core consisting of 8 vector engines.
• (Vector Engine formerly referred to as Execution-Units/EU, Xe-Core formerly referred to as

Sub-Slice in Gen9/Gen11 Graphics HW)

• 16 Xe-Cores with a hardware context make up a Xe-Slice

• Up to 4 Xe-Slice makes Xe-Stack (with up to 64 Xe-Cores)

• 1 or more Xe-Stacks can be present in GPU

19SYCL Essentials

Intel Data Center GPU MAX Series

Intel® Data Center GPU Max Series Overview

Available today:

• Intel® Data Center GPU Max 1100 (56 Xe Cores)

• Intel® Data Center GPU Max 1550 (128 Xe Cores)

https://www.intel.com/content/www/us/en/products/details/discrete-gpus/data-center-gpu/max-series.html

20SYCL Essentials

Intel Developer Cloud

Intel® Developer Cloud is a service platform for developing and
running workloads in Intel®-optimized deployment environments with
the latest Intel® processors, Intel® GPUs and performance-optimized
software stacks.

• Sign-up for free

• cloud.intel.com

https://www.intel.com/content/www/us/en/developer/tools/devcloud/services.html

21SYCL Essentials

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel

Corporation or its subsidiaries. Other names and brands may be claimed as the property

of others.

22

	Slide 1: Memory Allocation and Memory Movement
	Slide 2: Agenda
	Slide 3: Learning Objectives
	Slide 4: SYCL Memory Model
	Slide 5: SYCL Buffers Method
	Slide 6: Unified Shared Memory – Implicit Movement
	Slide 7: Unified Shared Memory – Explicit Movement
	Slide 8: Which SYCL Memory Model should I use?
	Slide 9: Hand-on Workshop
	Slide 10: Optimization Techniques for Buffers
	Slide 11: Optimization Techniques for USM
	Slide 12: Resources
	Slide 13: Resources
	Slide 14: Intel Data Center GPU MAX Series
	Slide 15: Xe Core
	Slide 16: Xe Stack
	Slide 17: 2 Xe Stack
	Slide 18: Xe-HPC Architecture
	Slide 19: Intel Data Center GPU MAX Series
	Slide 20: Intel Developer Cloud
	Slide 21: Notices & Disclaimers
	Slide 22

