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 
I’m currently an associate computational scientist in the  at

1.
Personal Website: 
Background: {HEP, Lattice QCD, ML + Generative Modeling, Large Scale 
Training, LLMs, MCMC, ...}

Ongoing / recent work:

Building new parallelism techniques for
efficient scaling
Generative modeling (esp. for physical
systems)

1. Mostly getting supercomputers to stop yelling at each other 

Sam Foreman
Data Science Group

ALCF
samforeman.me

AI + Science
Building better sampling methods for
Lattice QCD
GenSLMs: Genome-scale language
models reveal SARS-CoV-2
evolutionary dynamics
Foundation models for long term
climate forecasting

Scaling Large Language Models
Optimizing distibuted training across
thousands of GPUs
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https://samforeman.me/
https://www.alcf.anl.gov/about/people/group/506
https://alcf.anl.gov/
https://samforeman.me/
https://github.com/saforem2/
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https://www.biorxiv.org/content/10.1101/2022.10.10.511571v2
https://saforem2.github.io/climate-analysis
https://saforem2.github.io/climate-analysis
https://github.com/saforem2/Megatron-DS-Benchmarking
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Status of Large Language Models1

1.  

2. 

Figure 1: Large Language Models have (LLM)s have taken the NLP community world by storm2

 saforem2/llm-lunch-talk (slides)

 Hannibal046/Awesome-LLM
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https://github.com/Hannibal046/Awesome-LLM
https://github.com/Hannibal046/Awesome-LLM
https://saforem2.github.io/llm-lunch-talk
https://github.com/Hannibal046/Awesome-LLM
https://github.com/Hannibal046/Awesome-LLM


Emergent Abilities

 Yao et al. ( )Emergent abilities of Large Language Models 2023
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https://arxiv.org/abs/2206.07682


Training LLMs

Figure 2: Visualization from Yang et al. ( )2023
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Recent Work (2017 – Now)
Recent Work
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Life-Cycle of the LLM

1. Figure from 

1. Data collection + preprocessing
2. Pre-training

Architecture decisions:
{model_size, 
hyperparameters,
parallelism, 
lr_schedule, ...}

3. Supervised Fine-Tuning
Instruction Tuning
Alignment

4. Deploy (+ monitor, re-evaluate,
etc.)

Figure 3: Pre-training: Virtually all of the compute used
during pretraining phase1.

The Illustrated Transformer
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http://jalammar.github.io/illustrated-transformer/


Life-Cycle of the LLM: Pre-training

Figure 4: Pre-training: Virtually all of the compute used during pretraining phase
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Life-Cycle of the LLM: Fine-Tuning

1. Figure from 

Figure 5: Fine-tuning1: Fine-tuning actually updates the model’s weights to make the model better at a certain task.

The Illustrated Transformer
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http://jalammar.github.io/illustrated-transformer/


Transformer Architecture

Softmax

=

Output
Embedding

Input
Embedding

Positional
Encoding

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

 

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Linear

Positional
Encoding

Inputs Outputs
(shifted inputs)

Output
Probabilities

 

Decoder

Encoder

N 

N 

Vaswani et al. ( )2017

11



Forward Pass

Figure 6: Language Model trained for causal language modeling. Video from: 🤗  Generation with LLMs
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https://huggingface.co/docs/transformers/main/en/llm_tutorial


Generating Text

Figure 7: Language Model trained for causal language modeling. Video from: 🤗  Generation with LLMs
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https://huggingface.co/docs/transformers/main/en/llm_tutorial


Parallelism Overview
Modern parallelism techniques enable the training of large language
models
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Parallelism Concepts1

DataParallel (DP):
The same setup is replicated multiple times, and each being fed a slice of the
data.
The processing is done in parallel and all setups are synchronized at the end of
each training step.

TensorParallel (TP):
Each tensor is split up into multiple chunks.
So, instead of having the whole tensor reside on a single gpu, each shard of the
tensor resides on its designated gpu.

During processing each shard gets processed separately and in parallel on
different GPUs and the results are synced at the end of the step.
This is what one may call horizontal parallelism, as he splitting happens on
horizontal level.

1. 🤗  Model Parallelism
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https://huggingface.co/docs/transformers/v4.15.0/parallelism


Parallelism Concepts1

PipelineParallel (PP):
Model is split up vertically (layer-level) across multiple GPUs, so that only one or
several layers of the model are places on a single gpu.

Each gpu processes in parallel different stages of the pipeline and working on
a small chunk of the batch.

Zero Redundancy Optimizer (ZeRO):
Also performs sharding of the tensors somewhat similar to TP, except the whole
tensor gets reconstructed in time for a forward or backward computation,
therefore the model doesn’t need to be modified.
It also supports various offloading techniques to compensate for limited GPU
memory.

Sharded DDP:
Another name for the foundational ZeRO concept as used by various other
implementations of ZeRO.

1. 🤗  Model Parallelism

16

https://huggingface.co/docs/transformers/v4.15.0/parallelism


Data Parallelism
Data Parallelism:

The simplest and most common parallelism technique. Workers maintain
identical copies of the complete model and work on a subset of the data.
DDP  supported in PyTorch native.

ZeRO Data Parallel
ZeRO powered data parallelism is shown below1

1. Blog Post
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https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/


Tensor Parallelism1

In Tensor Paralleism each GPU processes only a slice of a tensor and only
aggregates the full tensor for operations that require the whole thing.

The main building block of any transformer is a fully connected nn.Linear
followed by a nonlinear activation GeLU.

Y = GeLU(XA) , where X and Y are the input and output vectors, and A
is the weight matrix.

If we look at the computation in matrix form, it’s easy to see how the
matrix multiplication can be split between multiple GPUs:

1. Efficient Large-Scale Language Model Training on GPU Clusters
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https://arxiv.org/abs/2104.04473


Tensor Parallelism
19



3D Parallelism
DP  + TP  + PP  (3D) Parallelism

3D Parallelism illustration. Figure from: https://www.deepspeed.ai/
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https://www.deepspeed.ai/




3D Parallelism
DP  + TP  + PP  (3D) Parallelism

Figure taken from 3D parallelism: Scaling to trillion-parameter models
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https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/


Running on ALCF
We’ve provided a virtual environment complete with all dependencies for running
 argonne-lcf/Megatron-DeepSpeed

# navigate to directory ---------------------------------------
WORKSHOP_DIR="/lus/grand/projects/fallwkshp23/"
PROJECTS_DIR="${WORKSHOP_DIR}/foremans/projects"
PROJECT_DIR="${PROJECTS_DIR}/argonne-lcf/Megatron-DeepSpeed"
cd "${PROJECT_DIR}"
# load conda module and activate venv -------------------------
module load conda/2023-10-04; conda activate base
source venvs/polaris/2023-10-04/bin/activate
# set runtime environment variables ---------------------------
export IBV_FORK_SAFE=1
export CUDA_DEVICE_MAX_CONNECTIONS=1
# set environment variables for running -----------------------
SEQ_LEN=1024
MICRO_BATCH=1
SP_TYPE="megatron" 
MODEL_SIZE_KEY="GPT1_5B"
# launch training --------------------------------------------
./ALCF/train-gpt3.sh 
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https://github.com/argonne-lcf/Megatron-DeepSpeed
https://github.com/argonne-lcf/Megatron-DeepSpeed


Running on ALCF
Executable:

Output

MODEL_SIZE_KEY="GPT1_5B" SEQ_LEN=1024 MICRO_BATCH=1 SP_TYPE="megatron" ./ALCF/train-gpt3.sh

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
ALCF_DIR: /lus/grand/projects/fallwkshp23/foremans/locations/polaris/projects/argonne-lcf/Me
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
source-ing /lus/grand/projects/fallwkshp23/foremans/locations/polaris/projects/argonne-lcf/M
Setting up MPI on Polaris from x3210c0s1b0n0
++ SetupMPI() +++++++++++++++++++++++++++++++++
Using HOSTFILE: /var/spool/pbs/aux/1126584.polaris-pbs-01.hsn.cm.polaris.alcf.anl.gov
NHOSTS: 2
NGPU_PER_HOST: 4
NGPUS: 8
+++++++++++++++++++++++++++++++++++++++++++++++
Skipping setupThetaGPU() on x3210c0s1b0n0
Setting up MPI on Polaris from x3210c0s1b0n0
USING PYTHON: /lus/grand/projects/fallwkshp23/foremans/locations/polaris/projects/argonne-lc
[...]
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Running on ALCF
Once the text has finally stopped printing, you should see output similar to the following:

To watch / view the output:

will look like1:

1. 

Job started at: 2023-10-11-092906 on x3210c0s1b0n0
[...]
Writing logs to: /lus/grand/projects/fallwkshp23/foremans/locations/polaris/projects/argonne-lcf/Megatron-DeepSp
to view output: tail -f $(tail -1 logfiles)
i.e. tail -f /lus/grand/projects/fallwkshp23/foremans/locations/polaris/projects/argonne-lcf/Megatron-DeepSpeed/

tail -fn 1000 $(tail -1 logfiles) | less

Job started at: 2023-10-11-092906 on x3210c0s1b0n0
Training GPT-3 with GPT13B parameters
Writing logs to: /lus/grand/projects/fallwkshp23/foremans/locations/polaris/projects/argonne-lcf/Megatron-DeepSp
to view output: tail -f $(tail -1 logfiles)
i.e. tail -f /lus/grand/projects/fallwkshp23/foremans/locations/polaris/projects/argonne-lcf/Megatron-DeepSpeed/
using: /lus/grand/projects/fallwkshp23/foremans/locations/polaris/projects/argonne-lcf/Megatron-DeepSpeed/venvs/
[...]

🚀  W&B Run: soft-wave-264
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https://wandb.ai/l2hmc-qcd/GenSLM-Megatron-DS/runs/1uve3tdk?workspace=user-saforem2


Getting Started at ALCF
We provide below the details for installing / getting started on ALCF (Polaris)
Installation:
1.  Clone GitHub repo:

2. Load Conda module:
Polaris:

ThetaGPU:

git clone https://github.com/argonne-lcf/Megatron-DeepSpeed

if [[ "$(hostname)==x3*" ]]; then
    export MACHINE="Polaris"
    export CONDA_DATE="2023-10-04"
    module load conda/${CONDA_DATE}
    conda activate base
fi

if [[ "$(hostname)==theta*" ]]; then
    export MACHINE="ThetaGPU"
    export CONDA_DATE="2023-01-10"
    module load conda/${CONDA_DATE}
    conda activate base
fi
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Getting Started
3. Setup virtual environment1:

4. Create a new folder where we’ll install dependencies:

1. On-top of the base conda  environment (--system-site-packages )

cd Megatron-DeepSpeed
# create a new virtual environment
mkdir -p "venvs/${MACHINE}/${CONDA_DATE}"
python3 -m  venv "venvs/${MACHINE}/${CONDA_DATE}" --system-site-packages
source "venvs/${MACHINE}/${CONDA_DATE}/bin/activate"

mkdir -p "deps/${MACHINE}"
cd "deps/${MACHINE}"
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Install Dependencies

The  supports three different implementations of FlashAttention: (v1.0.4 , v2.x , triton )

FlashAttention v2.x  may have numerical instability issues. For the best performance, we recommend using
FlashAttention + Triton

:

v1.0.4 :

v2.x :

openai/triton :

 Dao-AILab/flash-attention  saforem2/ezpz  NVIDIA/apex

new release

 Dao-AILab/flash-attention

python3 -m pip install flash-attn==1.0.4

git clone https://github.com/Dao-AILab/flash-attention
cd flash-attention
python3 setup.py install

git clone -b legacy-backend https://github.com/openai/triton
cd triton/python
python3 -m pip install cmake pybind11
python3 -m pip install .
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http://localhost:4269/?print-pdf=
https://github.com/Dao-AILab/flash-attention
https://github.com/Dao-AILab/flash-attention


Running
The  directory contains shell scripts for setting up the environment
and specifying options to be used for training.

 ALCF/

 
├──  
├──  
├──  
├──  
├──  
├──  
└──  

ALCF/
args.sh
launch.sh
model.sh
setup.sh
submit-pbs.sh
submit.sh
train-gpt3.sh

  Various options can be specified
dynamically at runtime by setting them in
your environment, e.g.:
# Set env. vars to use:
MODEL_SIZE_KEY="GPT25B"
SEQ_LEN=1024
USE_FLASH_ATTN=1
MICRO_BATCH=1
GAS=1
SP_TYPE="megatron"
ZERO_STAGE=1
# Launch training:
./ALCF/train-gpt3.sh

28

https://github.com/argonne-lcf/Megatron-DeepSpeed/tree/main/ALCF
https://github.com/argonne-lcf/Megatron-DeepSpeed/tree/main/ALCF
https://github.com/argonne-lcf/Megatron-DeepSpeed/tree/main/ALCF
https://github.com/argonne-lcf/Megatron-DeepSpeed/blob/main/ALCF/models.sh
https://github.com/argonne-lcf/Megatron-DeepSpeed/blob/main/ALCF/launch.sh
https://github.com/argonne-lcf/Megatron-DeepSpeed/blob/main/ALCF/model.sh
https://github.com/argonne-lcf/Megatron-DeepSpeed/blob/main/ALCF/setup.sh
https://github.com/argonne-lcf/Megatron-DeepSpeed/blob/main/ALCF/submit-pbs.sh
https://github.com/argonne-lcf/Megatron-DeepSpeed/blob/main/ALCF/submit.sh
https://github.com/argonne-lcf/Megatron-DeepSpeed/blob/main/ALCF/train-gpt3.sh


Details
Explicitly:

: Main entry point for training. This script will:
Source the rest of the required  scripts below

: Contains some example model architectures for GPT3-style
models

: Logic for parsing / setting up runtime options for Megatron and
DeepSpeed

: Locate and activate virtual environment to be used, ensure MPI
variables are set properly

: Identify available resources and build the command to be
executed

i.e. figure out how many: {nodes, GPUs per node, GPUs total} , to pass to
mpi{run,exec}
then, use this to launch mpiexec <mpiexec-args> python3  
<gpt-args>

 ALCF/train-gpt3.sh
ALCF/*.sh

 ALCF/models.sh

 ALCF/args.sh

 ALCF/setup.sh

 ALCF/launch.sh

pretrain_gpt.py
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https://github.com/argonne-lcf/Megatron-DeepSpeed/blob/main/ALCF/train-gpt3.sh
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https://github.com/argonne-lcf/Megatron-DeepSpeed/blob/main/ALCF/args.sh
https://github.com/argonne-lcf/Megatron-DeepSpeed/blob/main/ALCF/launch.sh
https://github.com/argonne-lcf/Megatron-DeepSpeed/blob/main/ALCF/launch.sh
https://github.com/argonne-lcf/Megatron-DeepSpeed/blob/main/ALCF/pretrain_gpt.py%60


DeepSpeed4Science

Latent space of biologically meaningful properties for SARS-CoV-2 genomes

DeepSpeed4Science
Long Sequence Support for GenSLM Model
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https://deepspeed4science.ai/
https://deepspeed4science.ai/2023/09/18/model-showcase-genslms/


Loooooooooong Sequence Lengths

DeepSpeed4Science

Table 2: Long sequence length support from 
Sequence

Length
Old Megatron-DeepSpeed

(TFLOPS)
New Megatron-DeepSpeed

(TFLOPS)
2k 25 68
4k 28 80
8k OOM 86

16k OOM 92
32k OOM 100
64k OOM 106

128k OOM 119
256k OOM 94

microsoft/Megatron-DeepSpeed
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https://github.com/microsoft/Megatron-DeepSpeed


Loooooooooong Sequence Lengths
Working with  team to enable longer sequence lengths (context
windows) for LLMs1

Figure 8: Maximum (achievable) SEQ_LEN  for both 25B  and 33B  models WIP

1. The described experiments were performed on 4 NVIDIA DGX A100-40GB nodes, all using TPSIZE=32[^tpsize], connected through 8
HDR InfiniBand (200Gb/s per HDR).↩︎

 Microsoft DeepSpeed

Release: DeepSpeed4Science Overview and Tutorial

DeepSpeed4Science

 
[ ]
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https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://www.deepspeed.ai/deepspeed4science/


Loooooooooong Sequence Lengths
We can evaluate the performance of our model by looking at two different metrics for
throughput: samples_per_sec  and TFLOPS .

Explicitly, we see that we are able to scale up to significantly longer sequences:
(420k / 128k ~ 3.3x ) with only a minimal impact on throughput
performance: (81 / 105 ~ 77% )1.

1. 

Table 3: Impact on TFLOPS as a function of increasing sequence length. Table from:

Name Sequence Length (k) ( seq_len / min_seq_len ) TFLOPS TFLOPS (% of peak)
GPT25B 420 3.28125 81.77225 77.867
GPT25B 400 3.125 90.62 86.297

GPT25B 360 2.8125 81.6325 77.7348
GPT25B 360 2.8125 82.6824 78.7346

GPT25B 192 1.5 115.8228 110.2927

GPT25B 128 1 106.672 101.5788
GPT25B 128 1 105.014 100.00

throughput/TFLOPS

throughput/TFLOPS
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https://api.wandb.ai/links/l2hmc-qcd/awklywn7
https://api.wandb.ai/links/l2hmc-qcd/awklywn7


Links
1.  
2. 
3. 
4. 
5. 
6. 
7. 
8.  
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 Hannibal046/Awesome-LLM
 Mooler0410/LLMsPracticalGuide
Large Language Models (in 2023)
The Illustrated Transformer
Generative AI Exists because of the Transformer
GPT in 60 Lines of Numpy
Better Language Models and their Implications

Progress / Artefacts / Outcomes from 🌸 Bloom BigScience
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