Optimizing SYCL workloads on Aurora and
Sunspot

Varsha Madananth

intel.

Agenda

Overview of Aurora
Device hierarchy
 Implicit vs Explicit Scaling
Software Stack on GPU
* SYCL programming model

« Compilation Workflow
Occupancy on GPU
* Reduce stalls

* Concurrent execution of work on GPU

Submitting kernels to GPU

* Regular command list vs Immediate Command list
Specialization constants
Floating point Accuracy

intel.

2

Aurora System

Intel-HPE machine arriving at Argonne in 2023
Sustained Performance = 1Exaflops DP

Compute Nodes

2 Intel Xeon CPU Max Series processors(Sapphire Rapids)
64GB HBM on each, 512GB DDR5 each;

6 Intel Data Center GPU Max Series(Ponte Vecchio [PVC o <

128GB HBM on each, RAMBO cache on each;

CPU-GPU Interconnect
CPU-GPU: PCle;

GPU-GPU: Xe Link
ALL-TO-ALL CONNECTIVITY WITHIN NODE Slingshot

Filesystem —
High Performance Storage - Distributed Asynchronous——
Object Store (DAOS) -

_own

> 230 PB of storage capacity; = 25 TB/s
Lustre
150PB of storage capacity; ~1 TB/s

— PVC

PVC —

> PVC

CPU

|, PVC

PVC
—‘ Slingshot

CPU

_own

intel. =

Intel GPU Architecture for Aurora

)le Stack

HPC

9 e N TTITTITIIIIIT]

Upto

Stacks 8 Hardware Contexts 4 Slices

T

(764 Xe-cores
64 Ray Tracing Units

[4 Hardware Contexts

HBM2e controllers

16 Xe Links

L2 Cache

U Vector Engines execute SIMD math & load/store

PVC Core/Subslice
U Each Vector Engine services multiple HW threads, issuing one thread [Veo | [VET | [VEz |[VE3]
instruction per clock tick
P [VE4 || VvES | [VE6 || VE7] EU = Vector Engine
U Multiple Vector Engines form a Core, sharing one memory load/store unit | Dispatch/1$ | [stM/L1$] Sub-Slice = Core
O Multiple Cores form a Slice | DataPort || RT | Slice = Slice
Tile = Stack

U Four Slices form a Stack

O Two Stacks forma PVC Total Threads = #_slices * #_cores_per_slice * #_ve_per_core * #_threads_per_ve
(3,584 =4*14 *8 * 8)
*Argonne/Intel/HPE Business/Procurement Sensitive - DO NOT DISTRIBUTE

intel. =«

Devices and sub-devices

A root-device is built using
Ve multiple sub-devices, also
known as stacks. These stacks
Stack O Stack 1 form a shared memory space
These

which allows to treat a root-
device as a monolithic device
~Y L3 L3 are sub without the requirement of
sub EUs EUs De(V_‘fes explicit communication
Devices -

stacks) between stacks.

stacks)

PVC

Each stack is exposed as a

device.
Stack O Stack 2
: These are
group . (== tiles)
distribution and memory (== stacks) L3 L3

placement.

Implicit vs Explicit Scaling

* Implicit Scaling provides a mechanism to automatically distribute
work across multiple stacks.
* No extensions required, works for non-multi-tile-aware applications.
* Driver automatically distributes work and allocations across underlying
resources

* Explicit Scaling: Application manually distributes work and
allocations across underlying resources.

* Same trade-off as for other NUMA systems:
* Implicit requires attention to memory placement, work scheduling, etc.
« Explicit requires an “extra” level of decomposition

intel.

Affinity Mask to expose devices

 Affinity mask allows an application to expose devices or sub-devices

e ZE_AFFINITY_MASK =0, 1,2,3,4,5: all parent devices and stacks are reported (same as default):

* ZE_AFFINITY_MASK = 0: only parent device 0 is reported as device handle 0, with all its stacks reported as sub-device handles:

* ZE_AFFINITY_MASK = 1: only parent device 1 is reported as device handle 0, with all its stacks reported as sub-device handles:

e ZE_AFFINITY_MASK = 0.0: only tile 0 in parent device 0 is reported as device handle 0:

* ZE_AFFINITY_MASK = 1.0, 1.1: only parent device 1 is reported as device handle 0; with its tiles 1 and 2 reported as its sub-devices 0 and 1, respectively:

» Target device using MPI ranks

* Target each MPI rank to a tile using env variable -
o export ZE_AFFINITY_MASK=$gpu_id.Stile_id
o Explicit scaling - 1 rank targets tile 0, and the other rank targets tile 1
o Implicit scaling — 1 rank targets 1 GPU with 2 stacks.
* On sunspot gpu_tile_compact.sh maps multiple ranks to each stack.
o mpiexec-np S{NTOTRANKS} -ppn S{NRANKS} -d S{NDEPTH} --cpu-bind depth -envall gpu_tile_compact.sh ./myBinaryName

* Partition by affinity domain -
* The root-device, corresponding to the whole GPU, can be partitioned to 2 sub-devices(each sub-device corresponding to a

physical stack exposed as separate device)

o try{
vector<device> SubDevices = RootDevice.create_sub_devices<
cl::sycliinfor:partition_property::partition_by affinity domain>(

cl::syclziinfor:partition_affinity domain::numa);

intel.

Software Stack on PVC

Application Workloads

Middleware & Frameworks

IF TensorFlow PyTorch Exnet

oneAPI Industry Specification

Direct Programming API-Based Programming

OpenMP Offload

Video Processing

Compilers
SYCL/OpenMP runtime

Level-Zero Interface

intel.

8

SYCL programming model

work-group of

(4,4,4) work-items

o

dimension 1
of ND-range

dimension 2
of ND-range

ND-Range

\j

Aension 4}

of ND-range

sub-group of
4 work-items

dimension 1
of work-group

Aimension 0

of work-group

D —
dimension 2
of work-group

Work-group

Shared Local Memory

- >
dimension 2
of sub-group

Sub-group Work-item

4

Private Memory

Global Memory

intel.

9

Compilation workflow

JIT Compilation

Front end(s) Host back end Linker Device back end
—————— -

JIT Compiler

SPIR-W Dewvice
obhject i mary
' Rumn
I App
Fat host @ I
binary + device :
SPIR-V i
I
I
1

AOT Compilation

Front end(s) Host back end Linker Device back end
= 1P e ——— = —— = el T g m———————————— I
i Pl - P i I
11 AOT Compiler 1 1
! b P b o @ ;
I ' o @ g I
: ' SPIR-V Device I . i ! Device 1
: b object binary b ' i binary I
- | 5 M
= N el I cathoste | i
I at hos I i
! b | | ! i device binary | 1 !
! b Host object b F |
! b @ b b :

b — — —_——— e ——— I o -

CoMPILE TO OBJECT execuTe

intel.

General principles of offloading kernels to GPU

= Data parallel parts of your applications

" Make effective utilization of GPUs hardware
* Offload large enough problem to minimize the data transfer overhead from CPU to GPU.

 Reduce back and forth data transfer from CPU and GPU.

" Non divergent control flow

* Minimize inactive threads in a subgroup.

= Data Access Pattern

* Contiguous memory access

" Optimize for lower latency on chip memory usage.

intel.

Occupancy

It is a measure of how much of its capacity the GPU is utilizing.

Several factors effect the occupancy of GPU
= Workgroup size
» Limitation on max wg size imposed by h/w or gpu driver
= Amount of memory in SLM per WG.
= Subgroup.
= Register size

Choosing the Work group size is important to fully utilize the GPU’s thread

which effects the occupancy
Work group size = Threads x SIMD sub-group size <= 1024

The Intel® GPU Occupancy Calculator can be used to calculate the occupancy

on an Intel GPU for a given kernel, and its work-group parameters.

Vtune gpu-hotspots analysis can be used to runtime occupancy of the GPU.

intel.

12

https://oneapi-src.github.io/oneAPI-samples/Tools/GPU-Occupancy-Calculator/index.html

Improving performance by decreasing register
pressure

* By default, PVC has 128 64-byte registers allocated per thread .
* There are 8 threads per VE.

* Registers spills can be expensive. Improve register usage per thread by
* Increasing the registers available per thread to 256.
* Running in lower simd width

* Increasing the register size, the number of threads available per EU to 4.
* Not enough threads to hide latency..

» By default, the subgroup size generated by compiler is 32.

intel.

Inspecting register spills

* Building with AOT shows warnings on spills at each kernel
* Inspected assembly by setting the following env variables -

* IGC_DumpToCurrentDir=1/IGC_DumpToCustomDir=<pwd>,
|GC_ShaderDumpEnable=1

* For more IGC env variables - https://github.com/intel/intel-graphics-

compiler/blob/master/documentation/configuration flags.md

[/ .kernel CeedKernelSyclRefQFunction IJacobian Newtonian Prim
//.platform PVCXT

//-thread config numGRF=128, numfAcc=4, numSWSB=16

/f.options _string ""

//.full options "-emitlocation -forcelAssignRhysicalReg "" -hasRNEandDenorm -noStitchExternFunc -linker 8 -lscEnableImmOffsFor 196638 -

preserverd -TotalGRFMum 128 -abortOn5pill 4 -boundsChecking -presched-ctrl & -presched-rp 188 -nodpsendreorder -5BIDDeploc -output -
binary -dumpcommonisa -shaderDumpFilter "" -dumpvisa -printHexFloatInfsm -noverifyCISA -enableHalflSC -hasInt6dfdd -partiallntéd -
generateDebuglnfo "

Jf.instCount 3287

//.RA type GRAPH_COLORING_SPILL_FF_RA

[/f.spill size 54784

/f.spill GRF est. ref count 1475

intel.

14

https://github.com/intel/intel-graphics-compiler/blob/master/documentation/configuration_flags.md
https://github.com/intel/intel-graphics-compiler/blob/master/documentation/configuration_flags.md

Setting subgroup size

* Environment variable
« export IGC_ForceOCLSIMDWidth=16|32
» Setting subgroup size per kernel basis
« Kernel Property - [intel::reqd_sub_group _size(16|32)]]

h.parallel for(sycl::nd_range(sycl::range{32}, sycl::range{32}),
[=](sycl::nd_item<1> it) [[intel::reqd_sub_group_size(32)]] {
int groupIld = it.get_group(0);

int globalIld = it.get_global_linear_id();

auto sg = it.get_sub_group();

int sgSize = sg.get_local_range()[0];

int sgGroupId = sg.get _group_id()[0];

int sgId = sg.get_local_id()[Q];

out << "globalld = " << sycl::setw(2) << globalld <<
" groupIld = " << groupld

<< " sgGroupIld = " << sgGroupIld << " sgId = " << sgId
<< " sgSize = " << sycl::setw(2) << sgSize

<< sycl::endl;

})s

1)

intel. s

Setting GRF modes

* GRF Mode Specification at Command Line (applies at the application Level)

« -ze-opt-large-register-file: Forces IGC to select large register file mode for ALL kernels

« -ze-opt-intel-enable-auto-large-GRF-mode: Enables IGC to select small/large GRF mode on a per-
kernel basis based on heuristics

« Default: IGC picks small GRF mode for ALL kernel
JIT - icpx -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend "-device pvc -options -ze-opt-large-register-file" test.cpp
AOT - icpx -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend "-device pvc -options -ze-opt-large-register-file" test.

* Register Allocation Mode for SYCL - Per-kernel specification

#include <sycl/ext/intel/experimental/kernel properties.hpp>
set_kernel properties(kernel properties::use_large grf);

cgh.parallel for<class FillBuffer>(NumOfWorkItems, [=](sycl::id<1> WIid)
{ set_kernel _properties(kernel properties::use_large grf);

// Fill buffer with indexes

Accessor[WIid] = (sycl::cl _int)WIid.get(9);

1)

intel. s

Concurrent execution of kernels

* Queues are out of order by default

* Multiple kernels can run simultaneously on a single queue
unless explicitly wait on events/queues or dependencies between accessors.

in-order queues property is used
+ sycl:property_list q_prop{sycl:property::queue:in_order()};
+ sycliqueue q1(d_selector, q_prop);

 To effectively utilize full machine compute resources,

* No guarantee that they will execute concurrently, depends on the
available resources

* Submit kernels to multiple queues.
* Oversubscribing MPI ranks on a stack

intel.

17

Modes of submitting work to GPU

The Level Zero API provides two modes of submitting work to the GPu

Regular command lists Immediate command lists
= Kernel launch (e.g. zeCommandListAppendLaunchKernel) = Kernel launch and submission occur together.
and submission (zeCommandQueueExecuteCommandList) are _ _ _
decoupled. = Immediate command list provide low latency

submissions of work to GPU.
= Submissions can be batched on the host, i.e., many operations o o
may be collected in a command list and then submitted together, * Kernel time is long enough to overlap the submission

thus dividing the submission cost across many operations. overhead.
= Number of batches (zeCommandQueueExecuteCommandLists) is ® SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLIS
less than the number of commands TS=1

(zeCommandListAppendLaunchKernel).

= If kernel time is very small, use regular command list with
batching.

= SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=0
= SYCL_PI_LEVEL_ZERO_BATCH_SIZE=<>

intel.

18

Specialization constants

* specialization constants are constants values can be set dynamically during execution of the application

* The values of these constants are fixed when a kernel is invoked, and they do not change during the
execution of the kernel.

* Specialization constants must be declared using the specialization_id class
* Setting and getting the value of a specialization constant
* Functions of class handler — set_specialization_constant, get_specialization_constant

template<auto& SpecName> template<auto& SpecName>
typename std::remove_reference t

void set_specialization _constant(typename <decltype(SpecName)> ::value_type

std::remove_reference _t<decltype(SpecName)>::v get _specialization constant();

alue_typevalue);

intel.

https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#specialization-constant

Example of using specialization constants

#include <sycl/sycl.hpp>
using namespace sycl; // (optional) avoids need for "sycl::" before
SYCL names

using coeff t = std:array<std:array<float, 3>, 3>;

// Read coefficients from somewhere.
coeff_tget coefficients();

// |dentify the specialization constant.
constexpr specialization_id<coeff t> coeff id;

void do_conv(buffer<float, 2> in, buffer<float, 2> out) {
queue myQueue;

myQueue.submit([&](handler &cgh) {
accessorin_acc{in, cgh,read only };
accessor out_acc { out, cgh, write_only };

// Set the coefficient of the convolution as constant.

// This will build a specific kernel the coefficient available as
literals.

cgh.set_specialization_constant<coeff_id>(get_coefficients());

cgh.parallel_for<class Convolution>(
in.get_range(), [=](item<2> item_id, kernel_handler h) {
floatacc = 0;
coeff_t coeff = h.get_specialization_constant<coeff_id>();
for(inti=-1;i<=1;i++){
if (item_id[0] +i < O || item_id[0] + i >= in_acc.get_range()[0])
continue;
for (intj=-1;j<=1;j++){
if (item_id[1] +j< O || item_id[1] +j >=
in_acc.get_range()[1])
continue;
// The underlying JIT can see all the values of the array
returned
// by coeff.get().
acc += coeff[i+ 1] + 1] *
in_acc[item_id[O] + i][item_id[1] + j];
}
}
out_acc[item_id] = acg;
};
h;

intel.

20

Floating point Accuracy

* Programmers of floating-point applications typically aim for the

following two objectives:
Accuracy: Produce results that are “close” to the result of the exact calculation.
Performance: Produce an application that runs as fast as possible.

* By default, fp-model=fast is used for host and device.

Floating Point Semantics Apply to Host and Device Apply to Host Compilation Only Apply To Device Compilation Only
Compilations

Precise -fp-model=precise -fp-model=precise and specify -Xsycl-target- -Xsycl-target-frontend "-fp-model=precise"
frontend "-fp-model=fast"

Fast-math -fp-model=fast (default) -fp-model=fast and specify -Xsycl-target- | -fp-model=precise and specify -Xsycl-target-

frontend "-fp-model=precise" frontend "-fp-model=fast"

Relaxed-Math (native Applies to device only Applies to device only -Xsycl-target-backend "-options -cl-fast-
instructions) relaxed-math"

intel. =

Summary

|dentify parts of your applications that can be offloaded to your application
* Intel offload advisor can help identify such kernels in your applications
Make the data resident on GPU as much as possible.

Tune applications to be less memory bound and more compute bound
* By improving the occupancy of the kernels
* Avoid register spills
* Avoid branch divergence to reduce inactive lanes in a subgroup
* Avoid cross tile memory access

Make sure GPU has enough work to fully utilize the GPU

* Oversubscribing GPU with multiple streams of work
* Hide memory latency with work

Use profiling tools to understand performance of kernels

* GPU Analysis with Vtune™ Profiler
* Intel® Advisor GPU Analysis

. Tools inside PTI-GPU - https://github.com/intel/pti-gpu
onetrace - host and device tracing tool for OpenCL(TM) and Level Zero backends with support of DPC++ (both for CPU and
GPU) and OpenMP* GPU offload;
oneprof - GPU HW metrics collection tool for OpenCL(TM) and Level Zero backends with support of DPC++ and OpenMP* GPU
offload;
ze tracer - "Swiss army knife" for Level Zero API call tracing and profiling (former ze_intercept);
gpuinfo - provides basic information about the GPUs installed in a system, and the list of HW metrics one can collect for it;
sysmon - Linux "top" like utility to monitor GPUs installed on a system;

intel. 22

https://github.com/intel/pti-gpu

Questions?

Upcoming Learning paths

* SYCL Work-Group Mapping and GPU Occupancy Calculation
* Optimizing GPU Memory Allocation and Movement using SYCL

intel. =

References

* Intel® oneAPl GPU Optimization Guide

* |Intel® oneAPl Programming Guide

ALCF Aurora

e Level Zero Specification document

 SYCL™ 2020 specification

ISO3DFD Code Walkthrough

intel.

https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-0/overview.html
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2023-0/overview.html
https://www.alcf.anl.gov/aurora
https://spec.oneapi.io/level-zero/latest/index.html
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html

	Slide 1: Optimizing SYCL workloads on Aurora and Sunspot
	Slide 2: Agenda
	Slide 3: Aurora System
	Slide 4: Intel GPU Architecture for Aurora
	Slide 5: Devices and sub-devices
	Slide 6: Implicit vs Explicit Scaling
	Slide 7: Affinity Mask to expose devices
	Slide 8: Software Stack on PVC
	Slide 9: SYCL programming model
	Slide 10: Compilation workflow
	Slide 11: General principles of offloading kernels to GPU
	Slide 12: Occupancy
	Slide 13: Improving performance by decreasing register pressure
	Slide 14: Inspecting register spills
	Slide 15: Setting subgroup size
	Slide 16: Setting GRF modes
	Slide 17: Concurrent execution of kernels
	Slide 18: Modes of submitting work to GPU
	Slide 19: Specialization constants
	Slide 20: Example of using specialization constants
	Slide 21: Floating point Accuracy
	Slide 22: Summary
	Slide 23: Upcoming Learning paths
	Slide 24: References

