
1

Optimizing SYCL workloads on Aurora and
Sunspot

Varsha Madananth

2

Agenda
▪ Overview of Aurora

▪ Device hierarchy

• Implicit vs Explicit Scaling

▪ Software Stack on GPU

• SYCL programming model

• Compilation Workflow

▪ Occupancy on GPU

• Reduce stalls

• Concurrent execution of work on GPU

▪ Submitting kernels to GPU

• Regular command list vs Immediate Command list

▪ Specialization constants

▪ Floating point Accuracy

3

Aurora System

Intel-HPE machine arriving at Argonne in 2023

Sustained Performance ≥ 1Exaflops DP

 Compute Nodes

2 Intel Xeon CPU Max Series processors(Sapphire Rapids)
64GB HBM on each, 512GB DDR5 each;
6 Intel Data Center GPU Max Series(Ponte Vecchio [PVC])
128GB HBM on each, RAMBO cache on each;

CPU-GPU Interconnect

CPU-GPU: PCIe;
GPU-GPU: Xe Link
ALL-TO-ALL CONNECTIVITY WITHIN NODE

 Filesystem

High Performance Storage - Distributed Asynchronous
Object Store (DAOS)

≥ 230 PB of storage capacity; ≥ 25 TB/s
 Lustre

 150PB of storage capacity; ~1 TB/s

PVC PVC

PVC PVC

PVC PVC

CPU CPU

DRAM DRAM

Slingshot Slingshot

4
*Argonne/Intel/HPE Business/Procurement Sensitive - DO NOT DISTRIBUTE

Intel GPU Architecture for Aurora

❑ Vector Engines execute SIMD math & load/store

❑ Each Vector Engine services multiple HW threads, issuing one thread
instruction per clock tick

❑ Multiple Vector Engines form a Core, sharing one memory load/store unit

❑ Multiple Cores form a Slice

❑ Four Slices form a Stack

❑ Two Stacks form a PVC

EU = Vector Engine

Sub-Slice = Core

Slice = Slice

Tile = Stack

Total Threads = #_slices * #_cores_per_slice * #_ve_per_core * #_threads_per_ve
(3,584 = 4 * 14 * 8 * 8)

PVC Subslice
VE0

Dispatch/I$ SLM/L1$

Data Port RT

VE1 VE2 VE3

VE4 VE5 VE6 VE7

PVC Core/Subslice

5

Devices and sub-devices

PVC
Stack 1Stack 0

HBMHBM

EUsEUs

L3L3

This is a
Root

Device

PVC

Stack 2Stack 0

HBMHBM

EUsEUs

L3L3

These are
Devices

(== tiles)
These are
Devices

(== stacks)

A root-device is built using
multiple sub-devices, also
known as stacks. These stacks
form a shared memory space
which allows to treat a root-
device as a monolithic device
without the requirement of
explicit communication
between stacks.

Each stack is exposed as a
device.

Programmer can take direct
control over work group
distribution and memory
placement.

These
are sub
Devices

(==

stacks)

These are
sub

Devices
(==

stacks)

6

Implicit vs Explicit Scaling

• Implicit Scaling provides a mechanism to automatically distribute
work across multiple stacks.
• No extensions required, works for non-multi-tile-aware applications.

• Driver automatically distributes work and allocations across underlying
resources

• Explicit Scaling: Application manually distributes work and
allocations across underlying resources.

• Same trade-off as for other NUMA systems:
• Implicit requires attention to memory placement, work scheduling, etc.

• Explicit requires an “extra” level of decomposition

7

Affinity Mask to expose devices

• Affinity mask allows an application to expose devices or sub-devices
• ZE_AFFINITY_MASK = 0, 1,2,3,4,5: all parent devices and stacks are reported (same as default):

• ZE_AFFINITY_MASK = 0: only parent device 0 is reported as device handle 0, with all its stacks reported as sub-device handles:

• ZE_AFFINITY_MASK = 1: only parent device 1 is reported as device handle 0, with all its stacks reported as sub-device handles:

• ZE_AFFINITY_MASK = 0.0: only tile 0 in parent device 0 is reported as device handle 0:

• ZE_AFFINITY_MASK = 1.0, 1.1: only parent device 1 is reported as device handle 0; with its tiles 1 and 2 reported as its sub-devices 0 and 1, respectively:

• Target device using MPI ranks
• Target each MPI rank to a tile using env variable -

o export ZE_AFFINITY_MASK=$gpu_id.$tile_id

o Explicit scaling - 1 rank targets tile 0, and the other rank targets tile 1

o Implicit scaling – 1 rank targets 1 GPU with 2 stacks.

• On sunspot gpu_tile_compact.sh maps multiple ranks to each stack.
o mpiexec -np ${NTOTRANKS} -ppn ${NRANKS} -d ${NDEPTH} --cpu-bind depth -envall gpu_tile_compact.sh ./myBinaryName

• Partition by affinity domain –
• The root-device, corresponding to the whole GPU, can be partitioned to 2 sub-devices(each sub-device corresponding to a

physical stack exposed as separate device)
• try {

 vector<device> SubDevices = RootDevice.create_sub_devices<

 cl::sycl::info::partition_property::partition_by_affinity_domain>(

 cl::sycl::info::partition_affinity_domain::numa);

 }

8

Software Stack on PVC

GPU

Direct Programming API-Based Programming

Libraries

Math Threading DPC++ Library

Analytics/
ML

DNN ML Comm

Video Processing

SYCL OpenMP Offload

Middleware & Frameworks

Level-Zero Interface

oneAPI Industry Specification

Middleware & Frameworks

Application Workloads

Compilers

SYCL/OpenMP runtime

9

SYCL programming model

simd-
lane

work-item

Private
memory

Global Memory

Shared Local Memory

Private Memory

10

Compilation workflow

JIT Compilation

AOT Compilation

11

General principles of offloading kernels to GPU

▪ Data parallel parts of your applications

▪ Make effective utilization of GPUs hardware

• Offload large enough problem to minimize the data transfer overhead from CPU to GPU.

• Reduce back and forth data transfer from CPU and GPU.

▪ Non divergent control flow

• Minimize inactive threads in a subgroup.

▪ Data Access Pattern

• Contiguous memory access

▪ Optimize for lower latency on chip memory usage.

12

Occupancy

• It is a measure of how much of its capacity the GPU is utilizing.

• Several factors effect the occupancy of GPU

▪ Workgroup size

▪ Limitation on max wg size imposed by h/w or gpu driver

▪ Amount of memory in SLM per WG.

▪ Subgroup.

▪ Register size
• Choosing the Work group size is important to fully utilize the GPU’s thread

which effects the occupancy
 Work group size = Threads x SIMD sub-group size <= 1024

• The Intel® GPU Occupancy Calculator can be used to calculate the occupancy
on an Intel GPU for a given kernel, and its work-group parameters.

• Vtune gpu–hotspots analysis can be used to runtime occupancy of the GPU.

https://oneapi-src.github.io/oneAPI-samples/Tools/GPU-Occupancy-Calculator/index.html

13

Improving performance by decreasing register
pressure

• By default , PVC has 128 64-byte registers allocated per thread .

▪ There are 8 threads per VE .

• Registers spills can be expensive. Improve register usage per thread by

• Increasing the registers available per thread to 256.

• Running in lower simd width

• Increasing the register size, the number of threads available per EU to 4.

• Not enough threads to hide latency. .

• By default, the subgroup size generated by compiler is 32.

14

Inspecting register spills

• Building with AOT shows warnings on spills at each kernel

• Inspected assembly by setting the following env variables –

• IGC_DumpToCurrentDir=1/IGC_DumpToCustomDir=<pwd>,
IGC_ShaderDumpEnable=1

• For more IGC env variables - https://github.com/intel/intel-graphics-
compiler/blob/master/documentation/configuration_flags.md

Generates asm for all kernels. To search for kernel names –

for f in ./*.asm; do echo "------------"; echo $f; cat $f | grep "\/\/.kernel"; done

https://github.com/intel/intel-graphics-compiler/blob/master/documentation/configuration_flags.md
https://github.com/intel/intel-graphics-compiler/blob/master/documentation/configuration_flags.md

15

Setting subgroup size
• Environment variable

• export IGC_ForceOCLSIMDWidth=16|32

• Setting subgroup size per kernel basis

• Kernel Property - [intel::reqd_sub_group_size(16|32)]]

h.parallel_for(sycl::nd_range(sycl::range{32}, sycl::range{32}),
[=](sycl::nd_item<1> it) [[intel::reqd_sub_group_size(32)]] {
int groupId = it.get_group(0);
int globalId = it.get_global_linear_id();
auto sg = it.get_sub_group();
int sgSize = sg.get_local_range()[0];
int sgGroupId = sg.get_group_id()[0];
int sgId = sg.get_local_id()[0];
out << "globalId = " << sycl::setw(2) << globalId <<
" groupId = " << groupId
<< " sgGroupId = " << sgGroupId << " sgId = " << sgId
<< " sgSize = " << sycl::setw(2) << sgSize
<< sycl::endl;
});
});

16

Setting GRF modes

• GRF Mode Specification at Command Line (applies at the application Level)
• -ze-opt-large-register-file: Forces IGC to select large register file mode for ALL kernels

• -ze-opt-intel-enable-auto-large-GRF-mode: Enables IGC to select small/large GRF mode on a per-
kernel basis based on heuristics

• Default: IGC picks small GRF mode for ALL kernel
 JIT - icpx -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend "-device pvc -options -ze-opt-large-register-file" test.cpp

 AOT - icpx -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend "-device pvc -options -ze-opt-large-register-file" test.

• Register Allocation Mode for SYCL - Per-kernel specification
• #include <sycl/ext/intel/experimental/kernel_properties.hpp>

• set_kernel_properties(kernel_properties::use_large_grf);

cgh.parallel_for<class FillBuffer>(NumOfWorkItems, [=](sycl::id<1> WIid)
{ set_kernel_properties(kernel_properties::use_large_grf);
// Fill buffer with indexes
Accessor[WIid] = (sycl::cl_int)WIid.get(0);
});

17

Concurrent execution of kernels

• Queues are out of order by default

• Multiple kernels can run simultaneously on a single queue
▪ unless explicitly wait on events/queues or dependencies between accessors.

▪ in-order queues property is used
• sycl::property_list q_prop{sycl::property::queue::in_order()};

• sycl::queue q1(d_selector, q_prop);

• To effectively utilize full machine compute resources,

• No guarantee that they will execute concurrently, depends on the
available resources

• Submit kernels to multiple queues.

• Oversubscribing MPI ranks on a stack

18

Modes of submitting work to GPU

Regular command lists

▪ Kernel launch (e.g. zeCommandListAppendLaunchKernel)
and submission (zeCommandQueueExecuteCommandList) are
decoupled.

▪ Submissions can be batched on the host, i.e., many operations
may be collected in a command list and then submitted together,
thus dividing the submission cost across many operations.

▪ Number of batches (zeCommandQueueExecuteCommandLists) is
less than the number of commands
(zeCommandListAppendLaunchKernel).

▪ If kernel time is very small, use regular command list with
batching.

▪ SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=0

▪ SYCL_PI_LEVEL_ZERO_BATCH_SIZE=<>

Immediate command lists

▪ Kernel launch and submission occur together.

▪ Immediate command list provide low latency
submissions of work to GPU.

▪ Kernel time is long enough to overlap the submission
overhead.

▪ SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLIS
TS=1

The Level Zero API provides two modes of submitting work to the GPu

19

Specialization constants

• specialization constants are constants values can be set dynamically during execution of the application

• The values of these constants are fixed when a kernel is invoked, and they do not change during the
execution of the kernel.

• Specialization constants must be declared using the specialization_id class

• Setting and getting the value of a specialization constant

• Functions of class handler – set_specialization_constant, get_specialization_constant

https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#specialization-constant

20

Example of using specialization constants

#include <sycl/sycl.hpp>
using namespace sycl; // (optional) avoids need for "sycl::" before
SYCL names

using coeff_t = std::array<std::array<float, 3>, 3>;

// Read coefficients from somewhere.
coeff_t get_coefficients();

// Identify the specialization constant.
constexpr specialization_id<coeff_t> coeff_id;

void do_conv(buffer<float, 2> in, buffer<float, 2> out) {
 queue myQueue;

 myQueue.submit([&](handler &cgh) {
 accessor in_acc { in, cgh, read_only };
 accessor out_acc { out, cgh, write_only };

 // Set the coefficient of the convolution as constant.
 // This will build a specific kernel the coefficient available as
literals.
 cgh.set_specialization_constant<coeff_id>(get_coefficients());

 cgh.parallel_for<class Convolution>(
 in.get_range(), [=](item<2> item_id, kernel_handler h) {
 float acc = 0;
 coeff_t coeff = h.get_specialization_constant<coeff_id>();
 for (int i = -1; i <= 1; i++) {
 if (item_id[0] + i < 0 || item_id[0] + i >= in_acc.get_range()[0])
 continue;
 for (int j = -1; j <= 1; j++) {
 if (item_id[1] + j < 0 || item_id[1] + j >=
in_acc.get_range()[1])
 continue;
 // The underlying JIT can see all the values of the array
returned
 // by coeff.get().
 acc += coeff[i + 1][j + 1] *
 in_acc[item_id[0] + i][item_id[1] + j];
 }
 }
 out_acc[item_id] = acc;
 });
 });

21

Floating point Accuracy

•Programmers of floating-point applications typically aim for the
following two objectives:
• Accuracy: Produce results that are “close” to the result of the exact calculation.
• Performance: Produce an application that runs as fast as possible.

• By default, fp-model=fast is used for host and device.

Floating Point Semantics Apply to Host and Device
Compilations

Apply to Host Compilation Only Apply To Device Compilation Only

Precise -fp-model=precise -fp-model=precise and specify -Xsycl-target-
frontend "-fp-model=fast"

-Xsycl-target-frontend "-fp-model=precise"

Fast-math -fp-model=fast (default) -fp-model=fast and specify -Xsycl-target-
frontend "-fp-model=precise"

-fp-model=precise and specify -Xsycl-target-
frontend "-fp-model=fast"

Relaxed-Math (native
instructions)

Applies to device only Applies to device only -Xsycl-target-backend "-options -cl-fast-
relaxed-math"

22

Summary

• Identify parts of your applications that can be offloaded to your application
• Intel offload advisor can help identify such kernels in your applications

• Make the data resident on GPU as much as possible.
• Tune applications to be less memory bound and more compute bound

• By improving the occupancy of the kernels
• Avoid register spills
• Avoid branch divergence to reduce inactive lanes in a subgroup
• Avoid cross tile memory access

• Make sure GPU has enough work to fully utilize the GPU
• Oversubscribing GPU with multiple streams of work
• Hide memory latency with work

• Use profiling tools to understand performance of kernels
• GPU Analysis with Vtune™ Profiler
• Intel® Advisor GPU Analysis
• Tools inside PTI-GPU - https://github.com/intel/pti-gpu

• onetrace - host and device tracing tool for OpenCL(TM) and Level Zero backends with support of DPC++ (both for CPU and
GPU) and OpenMP* GPU offload;

• oneprof - GPU HW metrics collection tool for OpenCL(TM) and Level Zero backends with support of DPC++ and OpenMP* GPU
offload;

• ze_tracer - "Swiss army knife" for Level Zero API call tracing and profiling (former ze_intercept);
• gpuinfo - provides basic information about the GPUs installed in a system, and the list of HW metrics one can collect for it;
• sysmon - Linux "top" like utility to monitor GPUs installed on a system;

https://github.com/intel/pti-gpu

23

Upcoming Learning paths
• SYCL Work-Group Mapping and GPU Occupancy Calculation
• Optimizing GPU Memory Allocation and Movement using SYCL

Questions?

24

References

• Intel® oneAPI GPU Optimization Guide

• Intel® oneAPI Programming Guide

• ALCF Aurora

• Level Zero Specification document

• SYCL™ 2020 specification

• ISO3DFD Code Walkthrough

https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-0/overview.html
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2023-0/overview.html
https://www.alcf.anl.gov/aurora
https://spec.oneapi.io/level-zero/latest/index.html
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html

	Slide 1: Optimizing SYCL workloads on Aurora and Sunspot
	Slide 2: Agenda
	Slide 3: Aurora System
	Slide 4: Intel GPU Architecture for Aurora
	Slide 5: Devices and sub-devices
	Slide 6: Implicit vs Explicit Scaling
	Slide 7: Affinity Mask to expose devices
	Slide 8: Software Stack on PVC
	Slide 9: SYCL programming model
	Slide 10: Compilation workflow
	Slide 11: General principles of offloading kernels to GPU
	Slide 12: Occupancy
	Slide 13: Improving performance by decreasing register pressure
	Slide 14: Inspecting register spills
	Slide 15: Setting subgroup size
	Slide 16: Setting GRF modes
	Slide 17: Concurrent execution of kernels
	Slide 18: Modes of submitting work to GPU
	Slide 19: Specialization constants
	Slide 20: Example of using specialization constants
	Slide 21: Floating point Accuracy
	Slide 22: Summary
	Slide 23: Upcoming Learning paths
	Slide 24: References

