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Agenda
▪ Overview of Aurora 

▪ Device hierarchy 

• Implicit vs Explicit Scaling 

▪ Software Stack on GPU

• SYCL programming model 

• Compilation Workflow

▪ Occupancy on GPU

• Reduce stalls 

• Concurrent execution of work on GPU

▪ Submitting kernels to GPU

• Regular command list vs Immediate Command list

▪ Specialization constants

▪ Floating point Accuracy
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Aurora System

Intel-HPE machine arriving at Argonne in 2023

Sustained Performance ≥ 1Exaflops DP

 Compute Nodes

2 Intel Xeon CPU Max Series processors(Sapphire Rapids)
64GB HBM on each, 512GB DDR5 each;
6 Intel Data Center GPU Max Series(Ponte Vecchio [PVC])
128GB HBM on each, RAMBO cache on each;

 
CPU-GPU Interconnect

CPU-GPU: PCIe; 
GPU-GPU: Xe Link
ALL-TO-ALL CONNECTIVITY WITHIN NODE

 Filesystem

High Performance Storage - Distributed Asynchronous 
Object Store (DAOS)

≥ 230 PB of storage capacity; ≥ 25 TB/s
 Lustre

 150PB of storage capacity; ~1 TB/s

PVC PVC

PVC PVC

PVC PVC

CPU CPU

DRAM DRAM

Slingshot Slingshot
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*Argonne/Intel/HPE Business/Procurement Sensitive - DO NOT DISTRIBUTE

Intel GPU Architecture for Aurora

❑ Vector Engines execute SIMD math & load/store

❑ Each Vector Engine services multiple HW threads, issuing one thread 
instruction per clock tick

❑ Multiple Vector Engines form a Core, sharing one memory load/store unit

❑ Multiple Cores form a Slice

❑ Four Slices form a Stack

❑ Two Stacks form a PVC

EU = Vector Engine

Sub-Slice = Core

Slice = Slice

Tile = Stack

Total Threads = #_slices * #_cores_per_slice * #_ve_per_core * #_threads_per_ve
(3,584 = 4 * 14 * 8 * 8)

PVC Subslice
VE0

Dispatch/I$ SLM/L1$

Data Port RT

VE1 VE2 VE3

VE4 VE5 VE6 VE7

PVC Core/Subslice
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Devices and sub-devices

PVC
Stack 1Stack 0

HBMHBM

EUsEUs

L3L3

This is a 
Root 

Device

PVC

Stack 2Stack 0

HBMHBM

EUsEUs

L3L3

These are 
Devices

(== tiles)
These are 
Devices

(== stacks)

A root-device is built using 
multiple sub-devices, also 
known as stacks. These stacks 
form a shared memory space 
which allows to treat a root-
device as a monolithic device 
without the requirement of 
explicit communication 
between stacks.

Each stack is exposed as a 
device.

Programmer can take direct 
control over work group 
distribution and memory 
placement.

These 
are sub 
Devices

(== 

stacks)

These are 
sub 

Devices
(== 

stacks)
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Implicit vs Explicit Scaling

• Implicit Scaling provides a mechanism to automatically distribute 
work across multiple stacks.
• No extensions required, works for non-multi-tile-aware applications.

• Driver automatically distributes work and allocations across underlying 
resources

• Explicit Scaling: Application manually distributes work and 
allocations across underlying resources.

• Same trade-off as for other NUMA systems:
• Implicit requires attention to memory placement, work scheduling, etc.

• Explicit requires an “extra” level of decomposition
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Affinity Mask to expose devices

• Affinity mask allows an application to expose devices or sub-devices 
• ZE_AFFINITY_MASK = 0, 1,2,3,4,5: all parent devices and stacks are reported (same as default):

• ZE_AFFINITY_MASK = 0: only parent device 0 is reported as device handle 0, with all its stacks reported as sub-device handles:

• ZE_AFFINITY_MASK = 1: only parent device 1 is reported as device handle 0, with all its stacks reported as sub-device handles:

• ZE_AFFINITY_MASK = 0.0: only tile 0 in parent device 0 is reported as device handle 0:

• ZE_AFFINITY_MASK = 1.0, 1.1: only parent device 1 is reported as device handle 0; with its tiles 1 and 2 reported as its sub-devices 0 and 1, respectively:

• Target device using MPI ranks
• Target each MPI rank to a tile using env variable - 

o export ZE_AFFINITY_MASK=$gpu_id.$tile_id 

o Explicit scaling - 1 rank targets tile 0, and the other rank targets  tile 1 

o Implicit scaling – 1 rank targets 1 GPU with 2 stacks.

• On sunspot gpu_tile_compact.sh maps multiple ranks to each stack.
o mpiexec -np ${NTOTRANKS} -ppn ${NRANKS} -d ${NDEPTH} --cpu-bind depth -envall gpu_tile_compact.sh ./myBinaryName

• Partition by affinity domain  – 
• The root-device, corresponding to the whole GPU, can be partitioned to 2 sub-devices(each sub-device corresponding to a 

physical stack exposed as separate device) 
• try {

      vector<device> SubDevices = RootDevice.create_sub_devices<

      cl::sycl::info::partition_property::partition_by_affinity_domain>(

      cl::sycl::info::partition_affinity_domain::numa);

 }
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Software Stack on PVC

GPU

Direct Programming API-Based Programming

Libraries

Math Threading DPC++ Library

Analytics/
ML

DNN ML Comm

Video Processing

SYCL OpenMP Offload

Middleware & Frameworks

Level-Zero Interface

oneAPI Industry Specification

Middleware & Frameworks

Application Workloads

Compilers

SYCL/OpenMP runtime
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SYCL programming model 

simd-
lane

work-item

Private 
memory

Global Memory

Shared Local Memory

Private Memory
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Compilation workflow

JIT Compilation 

AOT Compilation 
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General principles of offloading kernels to GPU

▪ Data parallel parts of your applications

▪ Make effective utilization of GPUs hardware

• Offload large enough problem to minimize the data transfer overhead from CPU to GPU. 

• Reduce back and forth data transfer from CPU and GPU. 

▪ Non divergent control flow

• Minimize inactive threads in a subgroup. 

▪ Data Access Pattern

• Contiguous memory access

▪ Optimize for lower latency on chip memory usage. 



12

Occupancy 

• It is a measure of how much of its capacity the GPU is utilizing.

• Several factors effect the occupancy of GPU

▪ Workgroup size

▪ Limitation on max wg size imposed by h/w or gpu driver

▪ Amount of memory in SLM per WG. 

▪ Subgroup. 

▪ Register size
• Choosing the Work group size is important to fully utilize the GPU’s thread 

which effects the occupancy
 Work group size = Threads x SIMD sub-group size <= 1024

• The Intel® GPU Occupancy Calculator can be used to calculate the occupancy 
on an Intel GPU for a given kernel, and its work-group parameters.

• Vtune gpu–hotspots analysis can be used to runtime occupancy of the GPU. 

https://oneapi-src.github.io/oneAPI-samples/Tools/GPU-Occupancy-Calculator/index.html
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Improving performance by decreasing register 
pressure

• By default , PVC has 128 64-byte registers allocated per thread .

▪  There are 8 threads per VE .

• Registers spills can be expensive. Improve register usage per thread by 

• Increasing the registers available per thread to 256.

• Running in lower simd width 

• Increasing the register size, the number of threads available per EU to 4. 

• Not enough threads to hide latency. .

• By default, the subgroup size generated by compiler is 32. 
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Inspecting register spills

• Building with AOT shows warnings on spills at each kernel

• Inspected assembly by setting the following env variables – 

• IGC_DumpToCurrentDir=1/IGC_DumpToCustomDir=<pwd>,  
IGC_ShaderDumpEnable=1

• For more IGC env variables - https://github.com/intel/intel-graphics-
compiler/blob/master/documentation/configuration_flags.md

Generates asm for all kernels. To search for kernel names – 

for f in ./*.asm; do echo "------------"; echo $f; cat $f | grep "\/\/.kernel"; done

https://github.com/intel/intel-graphics-compiler/blob/master/documentation/configuration_flags.md
https://github.com/intel/intel-graphics-compiler/blob/master/documentation/configuration_flags.md
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Setting subgroup size
• Environment variable 

• export IGC_ForceOCLSIMDWidth=16|32

• Setting subgroup size per kernel basis

• Kernel Property - [intel::reqd_sub_group_size(16|32)]]

h.parallel_for(sycl::nd_range(sycl::range{32}, sycl::range{32}), 
[=](sycl::nd_item<1> it) [[intel::reqd_sub_group_size(32)]] { 
int groupId = it.get_group(0); 
int globalId = it.get_global_linear_id(); 
auto sg = it.get_sub_group(); 
int sgSize = sg.get_local_range()[0]; 
int sgGroupId = sg.get_group_id()[0]; 
int sgId = sg.get_local_id()[0]; 
out << "globalId = " << sycl::setw(2) << globalId << 
" groupId = " << groupId 
<< " sgGroupId = " << sgGroupId << " sgId = " << sgId 
<< " sgSize = " << sycl::setw(2) << sgSize 
<< sycl::endl; 
}); 
}); 
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Setting GRF modes

• GRF Mode Specification at Command Line (applies at the application Level)
• -ze-opt-large-register-file: Forces IGC to select large register file mode for ALL kernels

• -ze-opt-intel-enable-auto-large-GRF-mode: Enables IGC to select small/large GRF mode on a per-
kernel basis based on heuristics

• Default: IGC picks small GRF mode for ALL kernel
                   JIT - icpx -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend "-device pvc -options -ze-opt-large-register-file" test.cpp

                   AOT - icpx -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend "-device pvc -options -ze-opt-large-register-file" test.

• Register Allocation Mode for SYCL - Per-kernel specification
• #include <sycl/ext/intel/experimental/kernel_properties.hpp> 

• set_kernel_properties(kernel_properties::use_large_grf);

cgh.parallel_for<class FillBuffer>( NumOfWorkItems, [=](sycl::id<1> WIid) 
{ set_kernel_properties(kernel_properties::use_large_grf); 
// Fill buffer with indexes 
Accessor[WIid] = (sycl::cl_int)WIid.get(0); 
}); 
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Concurrent execution of kernels

• Queues are out of order by default 

• Multiple kernels can run simultaneously on a single queue
▪ unless explicitly wait on events/queues or dependencies between accessors.

▪ in-order queues property is used
• sycl::property_list q_prop{sycl::property::queue::in_order()};

•  sycl::queue q1(d_selector, q_prop);

• To effectively utilize full machine compute resources, 

• No guarantee that they will execute concurrently, depends on the 
available resources

• Submit kernels to multiple queues.

• Oversubscribing MPI ranks on a stack
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Modes of submitting work to GPU

Regular command lists 

▪ Kernel launch (e.g. zeCommandListAppendLaunchKernel) 
and submission (zeCommandQueueExecuteCommandList) are 
decoupled.

▪ Submissions can be batched on the host, i.e., many operations 
may be collected in a command list and then submitted together, 
thus dividing the submission cost across many operations.

▪ Number of batches (zeCommandQueueExecuteCommandLists) is 
less than the number of commands 
(zeCommandListAppendLaunchKernel).

▪ If kernel time is very small, use regular command list with 
batching.

▪ SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=0

▪ SYCL_PI_LEVEL_ZERO_BATCH_SIZE=<>

Immediate command lists

▪ Kernel launch and submission occur together.

▪ Immediate command list provide low latency 
submissions of work to GPU.

▪ Kernel time is long enough to overlap the submission 
overhead.

▪ SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLIS
TS=1 

The Level Zero API provides two modes of submitting work to the GPu
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Specialization constants

• specialization constants are constants values can be set dynamically during execution of the application

• The values of these constants are fixed when a kernel is invoked, and they do not change during the 
execution of the kernel. 

• Specialization constants must be declared using the specialization_id class

• Setting and getting the value of a specialization constant

• Functions of class handler – set_specialization_constant, get_specialization_constant

https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#specialization-constant
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Example of using specialization constants

#include <sycl/sycl.hpp>
using namespace sycl; // (optional) avoids need for "sycl::" before 
SYCL names

using coeff_t = std::array<std::array<float, 3>, 3>;

// Read coefficients from somewhere.
coeff_t get_coefficients();

// Identify the specialization constant.
constexpr specialization_id<coeff_t> coeff_id;

void do_conv(buffer<float, 2> in, buffer<float, 2> out) {
  queue myQueue;

  myQueue.submit([&](handler &cgh) {
    accessor in_acc { in, cgh, read_only };
    accessor out_acc { out, cgh, write_only };

    

    // Set the coefficient of the convolution as constant.
    // This will build a specific kernel the coefficient available as 
literals.
    cgh.set_specialization_constant<coeff_id>(get_coefficients());

    cgh.parallel_for<class Convolution>(
        in.get_range(), [=](item<2> item_id, kernel_handler h) {
          float acc = 0;
          coeff_t coeff = h.get_specialization_constant<coeff_id>();
          for (int i = -1; i <= 1; i++) {
            if (item_id[0] + i < 0 || item_id[0] + i >= in_acc.get_range()[0])
              continue;
            for (int j = -1; j <= 1; j++) {
              if (item_id[1] + j < 0 || item_id[1] + j >= 
in_acc.get_range()[1])
                continue;
              // The underlying JIT can see all the values of the array 
returned
              // by coeff.get().
              acc += coeff[i + 1][j + 1] *
                     in_acc[item_id[0] + i][item_id[1] + j];
            }
          }
          out_acc[item_id] = acc;
        });
  });
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Floating point Accuracy 

•Programmers of floating-point applications typically aim for the 
following two objectives:
• Accuracy: Produce results that are “close” to the result of the exact calculation.
• Performance: Produce an application that runs as fast as possible.

• By default, fp-model=fast is used for host and device. 

Floating Point Semantics Apply to Host and Device 
Compilations

Apply to Host Compilation Only Apply To Device Compilation Only

Precise -fp-model=precise -fp-model=precise and specify -Xsycl-target-
frontend "-fp-model=fast"

-Xsycl-target-frontend "-fp-model=precise"

Fast-math -fp-model=fast (default) -fp-model=fast and specify -Xsycl-target-
frontend "-fp-model=precise"

-fp-model=precise and specify -Xsycl-target-
frontend "-fp-model=fast"

Relaxed-Math (native 
instructions)

Applies to device only Applies to device only -Xsycl-target-backend "-options -cl-fast-
relaxed-math"
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Summary

• Identify parts of  your applications that can be offloaded to your application
• Intel offload advisor can help identify such kernels in your applications

• Make the data resident on GPU as much as possible.
• Tune applications to be less memory bound and more compute bound

• By improving the occupancy of the kernels
• Avoid register spills 
• Avoid branch divergence to reduce inactive lanes in a subgroup 
• Avoid cross tile memory access

• Make sure GPU has enough work to fully utilize the GPU
• Oversubscribing GPU with multiple streams of work
• Hide memory latency with work

• Use profiling tools to understand performance of kernels
• GPU Analysis with Vtune™ Profiler
• Intel® Advisor GPU Analysis
• Tools inside PTI-GPU - https://github.com/intel/pti-gpu

• onetrace - host and device tracing tool for OpenCL(TM) and Level Zero backends with support of DPC++ (both for CPU and 
GPU) and OpenMP* GPU offload;

• oneprof - GPU HW metrics collection tool for OpenCL(TM) and Level Zero backends with support of DPC++ and OpenMP* GPU 
offload;

• ze_tracer - "Swiss army knife" for Level Zero API call tracing and profiling (former ze_intercept);
• gpuinfo - provides basic information about the GPUs installed in a system, and the list of HW metrics one can collect for it;
• sysmon - Linux "top" like utility to monitor GPUs installed on a system;

https://github.com/intel/pti-gpu
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Upcoming Learning paths
• SYCL Work-Group Mapping and GPU Occupancy Calculation
• Optimizing GPU Memory Allocation and Movement using SYCL

Questions?
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References

• Intel® oneAPI GPU Optimization Guide

• Intel® oneAPI Programming Guide

• ALCF Aurora 

• Level Zero Specification document

• SYCL™ 2020 specification

• ISO3DFD Code Walkthrough

https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-0/overview.html
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2023-0/overview.html
https://www.alcf.anl.gov/aurora
https://spec.oneapi.io/level-zero/latest/index.html
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html
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