
ALCF HANDS-ON HPC WORKSHOP

About QMCPACK - Downloads Documentation - Nexus Pseudopotential Library

PATH TO EXASCALE MATERIAL SIMULATION

YE LUO Argonne National Laboratory

Oct 10th 2023 Argonne National Laboratory

OUTLINE

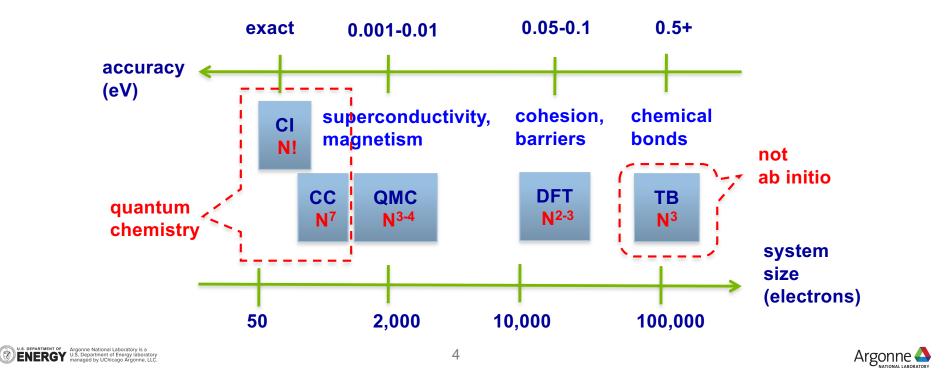
- Quantum Monte Carlo intro
- A High-Performance Design for Hierarchical Parallelism (HiPar 22)
- A highly efficient delayed update algorithm for evaluating Slater determinants (APS March Meeting 23)
- Performance benchmark.



ACKNOWLEDGEMENT

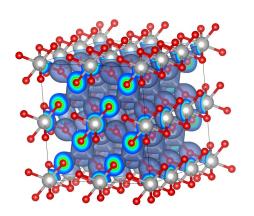
Exascale Computing Project : application development

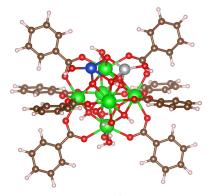
 This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S.
 Department of Energy's Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and hardware technology, to support the nation's exascale computing imperative.



ELECTRONIC STRUCTURE METHODS

QMC can be the new sweet spot

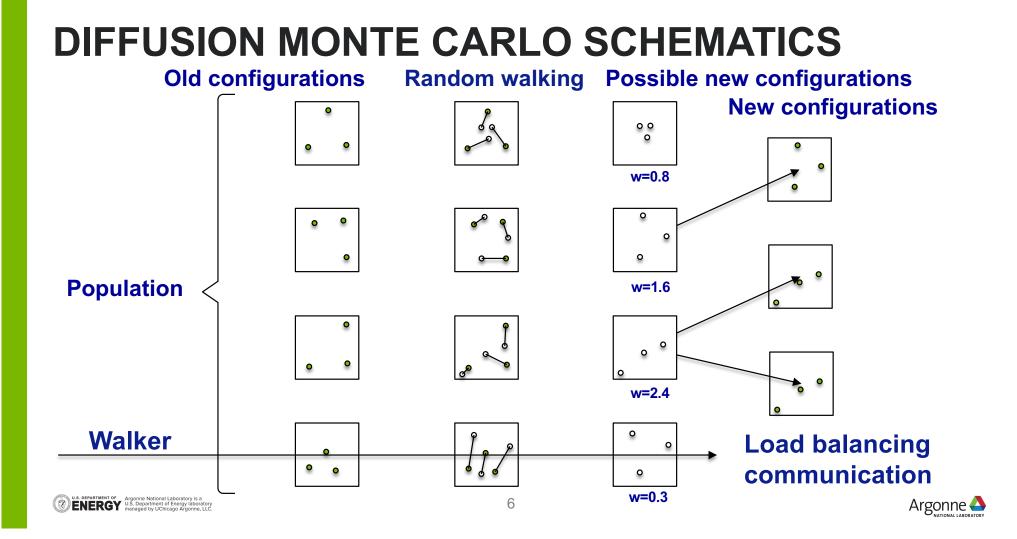

Time scale: picosecond = 10^{-12} seconds


Length scale: $10 \text{ nm} = 10^{-8} \text{ meters}$

PETASCALE TO EXASCALE CHALLENGE

How large problem can we solve?

Metal organic framework 153 atoms with 594 electrons, 10 meV total energy. A Benali, YL, et al. J. Phys. Chem. C, 122, 16683 (2018)

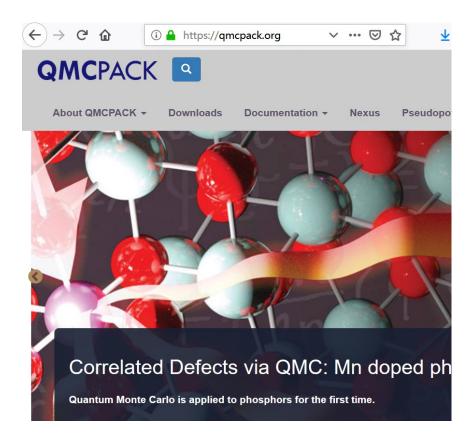

What is next?

- 1. Solve faster and more petascale problems
- 2. Solve much larger problems

1k atoms 10k electrons

TiO2 polymorphs 216 atoms with 1536 electrons, 10 meV/f.u. YL et al. New J. Phys. 18 113049 (2016)

A HIGH-PERFORMANCE DESIGN FOR HIERARCHICAL PARALLELISM


U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

QMCPACK

BENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne. LLC.

- QMCPACK, is a modern high-performance open-source Quantum Monte Carlo (QMC) simulation code for electronic structure calculations of molecular, quasi-2D and solidstate systems.
- The code is C/C++ and adopts MPI+X (OpenMP+offload/CUDA/HIP/SYCL)
- Monte Carlo: massive Markov chains (walkers) evolving in parallel. 1st level concurrency. Good for MPI and coarse level threads.
- Quantum: The computation in each walker can be heavy when solving many body systems (electrons). 2nd level concurrency. Good for fine level threads and SIMD.

WALKER BASED PARALLELISM

Works extreme well on petascale supercomputers

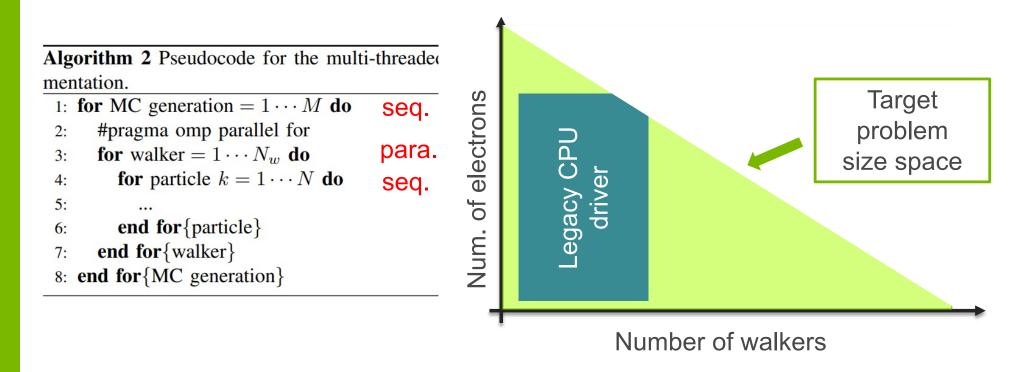
- Weak scaling efficiency 99% on 2/3 Mira and 95% on almost full Titan.
- Weak scaling, fix work per node. Strong scaling, fix the total number of samples.
- Equilibration excluded.

PRE AND EXASCALE SYSTEMS IN 2023

Need to make the code work on all machines

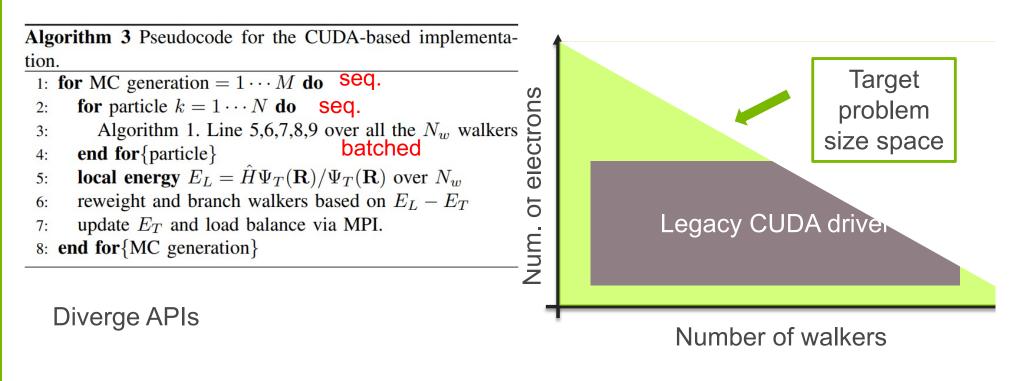
NERSC Perlmutter

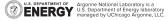
Argonne Polaris



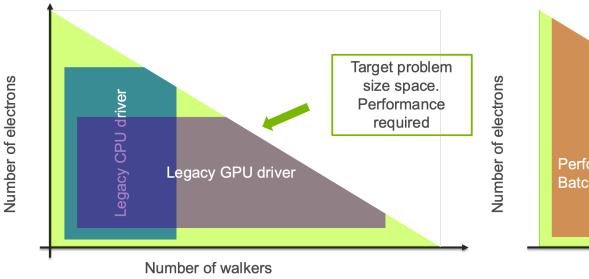
<image><text><text><image>

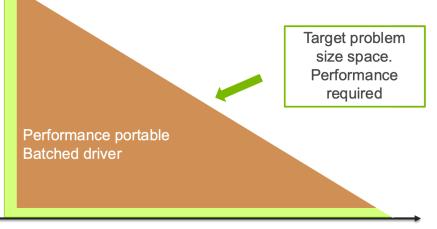
Make QMCPACK run well everywhere including CPU-only systems On-node performance is the focus




LEGACY CPU IMPLEMENTATION

CUDA-BASED GPU IMPLEMENTATION

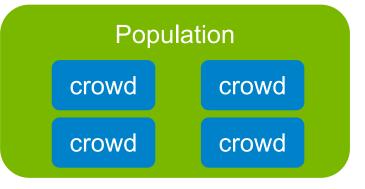




TRACING ON NVDIA GPUS Single thread + GPU idle gaps

Timeline View	I	•						
11s-	32.105ms	+782,11ms	+782.1	15ms	+782.12ms	+782.12	25ms	+782,13
Processes (2)								
- [1192809] qm								
- Threads (1)								
- [1192809] q								
CUDA API	cudaMemo	one boo	y r) <mark>cuc</mark>	laMemcr	oyT]⊂udaM	lemcpy	one bo	ody r 🕻
Profiler over								
- CUDA HW (N)			_	-				
→ [All Streams]	two body	ratio grad	Me	Me	two body ra	atio grad l	PBC	Me

UNIFY BOTH IMPLEMENTATIONS By design


Number of walkers

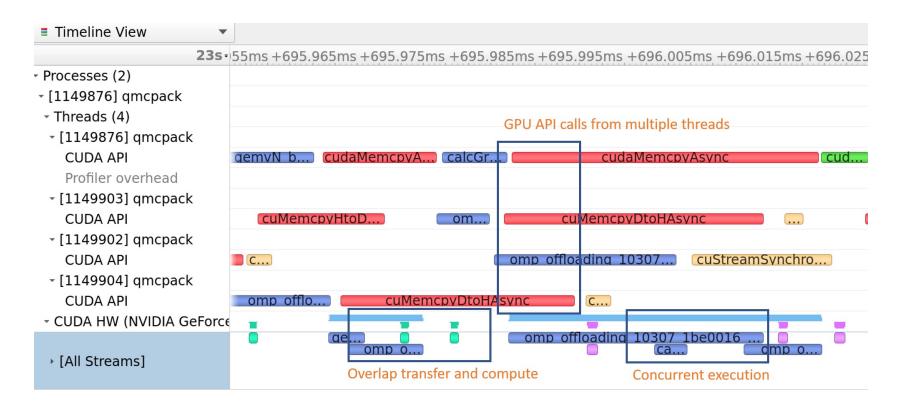
NEW DESIGN WITH CROWDS

Algorithm 4 Pseudocode for the batched DMC driver.

- 1: for MC generation $= 1 \cdots M$ do seq.
- 2: #pragma omp parallel for
- 3: for crowd = $1 \cdots C$ do para.
- 4: for particle $k = 1 \cdots N$ do Seq.
- 5: Algorithm 1. Line 5,6,7,8,9 over all walkers with in this crowd batched
- 6: **end for**{particle}
- 7: **local energy** $E_L = \hat{H}\Psi_T(\mathbf{R})/\Psi_T(\mathbf{R})$ over this crowd
- 8: reweight and branch walkers based on $E_L E_T$
- 9: update E_T and load balance via MPI.
- 10: **end for**{crowd} CG
- 11: end for{MC generation}

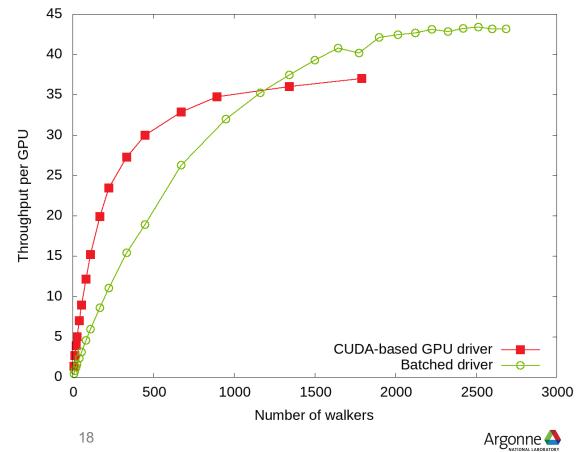
- lock-step walkers within a crowd
- Independent crowds
- Decay to legacy implementations

OPENMP OFFLOAD GPU IMPLEMENTATION


A bit more software technology to handle GPUs

- Use portable OpenMP target feature
 - Portable on NVIDIA, AMD, Intel GPUs. Fallback on CPU as well.
 - Multiple compilers. GNU, Clang, AOMP, NVHPC, OneAPI
- Multiple crowds (CPU threads) to launch kernels to GPUs
 - Maximize GPU utilization. Overlapping compute and transfer by OpenMP.
- Specialized in CUDA/HIP/SYCL to call NVIDIA/AMD/INTEL accelerated libraries.
 - cuBLAS/cuSolver, hipBLAS/rocSolver, MKL

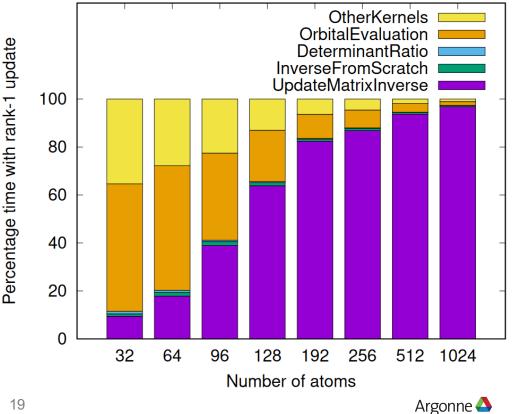
CROWDS ON OPENMP THREADS



ONE VS A FEW CROWDS

- 7 cores per GPU on OLCF Summit
- Fixed 7 crowds

U.S. DEPARTMENT OF U.S. DEPARTMENT OF U.S. Department of Energy laboratory U.S. Department, DEPartment of Energy laboratory unanaged by UChicago Argonne, LLC


- Small walker count, performance drops
- Large walker count, performance improves.

COMPUTATIONAL COST

Determinant update dominates

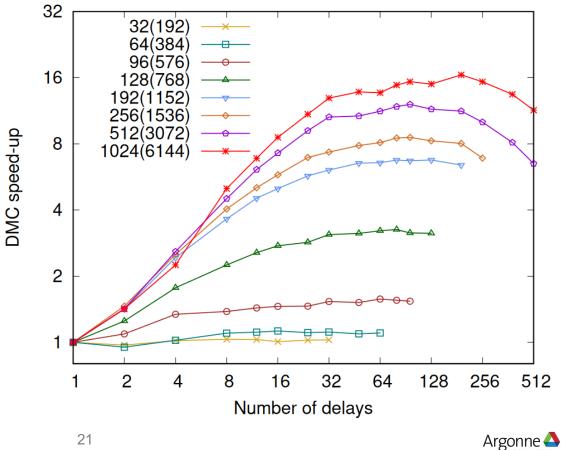
- Overall cost in a Monte Carlo step $\alpha N_e^3 + \beta N_e^2$
- In NiO solid benchmark, at medium to large atom counts, determinant update with rank-1 update takes almost all the time.
- Reason: rank-1 update uses N_e² FLOP and read/write N_e² numbers to memory. Unfriendly to hardware.
- Actual timing can be worse than cubic scaling due to out-of-cache.

DELAYED UPDATE

Using Sherman-Morrison-Woodbury formula

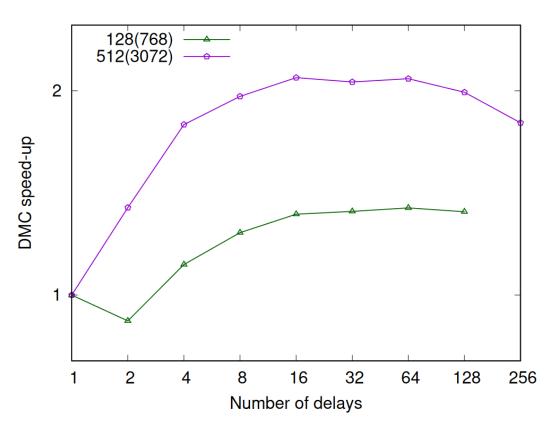
- Based on Fahy's variant not relying on U.
- Do not actually invert B. B⁻¹_{n+1} can be constructed based on B⁻¹_n.
- Compute v^{new} without the up-to-date inverse matrix.
- Computational cost 2N_e³ per Monte Carlo step.
- Matrix-matrix multiplication is the most efficient calculation on compute hardware.

U.S. DEPARTMENT OF U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC


$$\begin{split} \tilde{\mathbf{A}}^{\text{new}} &= \{ [\mathbf{A} + \mathbf{W}^T (\mathbf{U}^{\text{new}} - \mathbf{U})]^T \}^{-1} \\ &= \tilde{\mathbf{A}} - [\tilde{\mathbf{A}} (\mathbf{U}^{\text{new}})^T - \mathbf{W}^T] \mathbf{B}^{-1} \mathbf{V} \\ \mathbf{B} &= \mathbf{V} (\mathbf{U}^{\text{new}})^T \end{split}$$

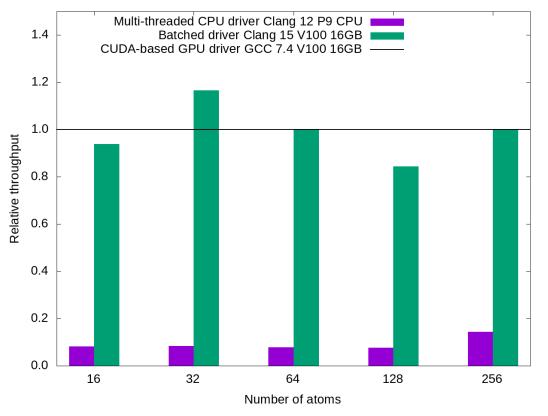
$$egin{aligned} \mathbf{v}^{ ext{new}} &= \left(\mathbf{w}^T ilde{\mathbf{A}}^{ ext{new}}
ight)^T \ &= \mathbf{v} - \mathbf{V}^T (\mathbf{B}^T)^{-1} \mathbf{U}^{ ext{new}} \mathbf{v} \end{aligned}$$

SPEED UP WITH DELAYED UPDATE 32 Up-to 16X


- Gain on all problem sizes.
- 16X speed-up with 1024 atom.

GPU Always gain

- At low electron counts, like a128, walkers are batched and run in lock-step. We add fake accept with unmodified orbitals to ensure all the walkers carry the same delay count and keep consistent sizes of matrices.
- At high electron counts, like a512, walkers are fully independent like the CPU case but data movement is more complicated.



22

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC Argonne

NEW IMPLEMENTATION PERFORMANCE

- The new implementation rivals the original CUDAbased GPU implementation.
- Production quality on NVDIA GPU systems like Summit and Polaris.
- Still problematic on AMD GPUs due to ROCr bugs.
- Intel software works well with this design

Aurora

Computing Quantum Mechanical Properties faster.

QMCPACK performance

Intel Data Center GPU Max Series

Nvidia H100

ISC High Performance

intel

1

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy

1.21

PORTING CHALLENGES

- Multiple threads sharing a GPU.
- Matrix solver stability and performance
- Programming model interoperability. OpenMP offload + CUDA/HIP/SYCL
- Correctness and performance of compiler and runtime libraries.
- Continuous science production.

CONCLUSION

- The new design of hierarchical parallelism maximized performance on hardware
- The new algorithm enable much more efficient calculation following hardware trend.
- The performance portable version of QMCPACK is ready for Exascale machines.

GPU PORTING GUIDE

- OpenMP offload optimization guide: beyond kernels -Lessons learned in QMCPACK. SC23 booth talk on youtube
- Lessons Learned in Designing Performance Portable QMCPACK Using OpenMP Offload to GPUs. Jun. 2023 OpenMP Users Monthly Telecon
- Path to Exascale Material Simulation on Aurora Supercomputer. IXPUG 2023 annual conference

