
Argonne Leadership Computing Facility1

Argonne Leadership Computing Facility2

Programming Models:
OpenMP

ALCF Hands-on HPC Workshop
Oct. 10, 2023
Colleen Bertoni

Argonne Leadership Computing Facility3

Why OpenMP?
• Open standard for parallel programming with support across vendors

• API and environment variables
• Specification document and examples: http://www.openmp.org
• Broad and expressive

• OpenMP runs on CPU threads, GPUs, SIMD units
• C/C++ and Fortran
• Supported by Intel, HPE, AMD, GNU, LLVM compilers and others
• OpenMP offload is supported on Aurora, Frontier, Perlmutter

• Portable across large DOE systems
• For Polaris: Why instead of CUDA?

• Easy to get started and trivial to parallelize loops
• The reduction clause simplifies data reduction

Argonne Leadership Computing Facility4

OpenMP Compiler Support for GPUs Across Hardware
and Vendors

GPU Vendor Compiler flags

Nvidia

LLVM clang++ -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda
HPE CC/ftn -fopenmp -fopenmp-targets=nvptx64/-h omp

Nvidia nvc++/ nvfortran -mp=gpu -gpu=cc80
IBM xlC_r/xlf90_r -qsmp=omp -qoffload
GNU g++/gfortran -fopenmp -foffload=-lm

Intel Intel icpx/ifx -fiopenmp -fopenmp-targets=spir64

AMD
AMD clang++/flang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -

Xopenmp-target=amdgcn-amd-amdhsa
GNU g++/gfortran -fopenmp -foffload=-lm
HPE CC/ftn -fopenmp/-homp

Generally about CPU and GPU compilers:
https://www.openmp.org/resources/openmp-compilers-tools/

https://www.openmp.org/resources/openmp-compilers-tools/

Argonne Leadership Computing Facility5

CPU OpenMP parallelism

#pragma omp parallel for private(x) reduction(+:sum)
for(int i=0; i<=num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

Distributes iterations to the threadsSpawn threads in a thread team

Argonne Leadership Computing Facility6

GPU OpenMP parallelism

#pragma omp target teams distribute parallel for private(x) reduction(+:sum)
for(int i=0; i<=num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

Creates teams of threads in the
target device

Distributes iterations to the threads

Argonne Leadership Computing Facility7

OpenMP Offload: Steps
• Basic offloading mechanisms

• Offloading code to the device
• Expressing parallelism
• Mapping data

Argonne Leadership Computing Facility8

How to use OpenMP – Execution Mapping

GPU
(device)

CPU
(host)

move data &
issue execution

• The target construct offloads the
enclosed code to the accelerator:
single thread on a device (GPU)

SM

Argonne Leadership Computing Facility9

How to use OpenMP – Execution Mapping
• The target construct offloads the

enclosed code to the accelerator:
single thread on a device (GPU)

• The teams construct creates a
league of teams: one thread each,
concurrent execution (on SMs)

GPU

CPU
(host)

GPU

SM
threads

Argonne Leadership Computing Facility10

How to use OpenMP – Execution Mapping
• The target construct offloads the

enclosed code to the accelerator:
single thread on a device (GPU)

• The teams construct creates a
league of teams: one thread each,
concurrent execution (on SMs)

• The parallel construct creates
threads in each team: parallel
execution (by hardware threads)

GPU

CPU
(host)

GPU

SM
threads

Argonne Leadership Computing Facility11

How to use OpenMP – Execution Mapping

#pragma omp target
#pragma omp teams distribute
for (int i=0; i<N; ++i) {
#pragma omp parallel for
 for (int j=0; j<N; ++j) {
 x[j+N*i] *= 2.0;

 }
}

• The target construct offloads the
enclosed code to the accelerator

• The teams construct creates a
league of teams

• The distribute construct distributes
the outer loop iterations between
the league of teams

• The parallel for combined
construct creates a thread team for
each team and distributes the inner
loop iterations to threads

Argonne Leadership Computing Facility12

How to use OpenMP – Data Mapping
• The target construct offloads the

enclosed code to the accelerator
• The teams construct creates a

league of teams
• The distribute construct distributes

the outer loop iterations between
the league of teams

• The parallel for combined
construct creates a thread team for
each team and distributes the inner
loop iterations to threads

• The map construct maps data for a
single target region

#pragma omp target map(tofrom:x[0:M])
#pragma omp teams distribute
for (int i=0; i<N; ++i) {
#pragma omp parallel for
 for (int j=0; j<N; ++j) {
 x[j+N*i] *= 2.0;

 }
}

Argonne Leadership Computing Facility13

How to use OpenMP – Working with GPU libraries
• Specific to the vendor
• For Nvidia, you can call the same

GPU libraries as in pure CUDA
• You can allocate memory with

OpenMP as usual
• The use_device_ptr clause tells

OpenMP to use the corresponding
device address in the data region
so it can pass the device pointer to
cuBLAS

cublasHandle_t handle;
if(cublasCreate(&handle) != CUBLAS_STATUS_SUCCESS){
 exit(EXIT_FAILURE);
}

#pragma omp target enter data \
map(to:aa[0:N*N],bb[0:N*N],cc_gpu[0:N*N])

#pragma omp target data use_device_ptr(aa,bb,cc_gpu)
 {
int cublas_error = cublasDgemm(handle,CUBLAS_OP_N,
CUBLAS_OP_N,size, size, size, &alpha, aa, size, bb,
size, &beta, cc_gpu, size);
}

cudaDeviceSynchronize();
cublasDestroy(handle);

Argonne Leadership Computing Facility14

OpenMP offload compilers and flags on Polaris

• Nvidia compilers are in the default environment on Polaris
• LLVM and Nvidia compilers are recommended
• https://www.alcf.anl.gov/support/user-guides/polaris/programming-
models/openmp-polaris/index.html

module compiler flags
PrgEnv-nvhpc cc/CC/ftn (nvc/nvc++/nvfortran) -mp=gpu -gpu=cc80

llvm mpicc/mpicxx (clang/clang++) -fopenmp -fopenmp-
targets=nvptx64-nvidia-cuda

PrgEnv-gnu cc/CC/ftn (gcc/g++/gfortran) -fopenmp
PrgEnv-cray cc/CC/ftn -fopenmp

Argonne Leadership Computing Facility15

OpenMP Offload: Hands-on
• 1:30 - 4:00 pm in Room 1404
• Agenda:
• Quickstart/Reminder for OpenMP offload on Polaris

• Setting the environment
• Building on Polaris
• Running on Polaris

• 101 Demo for GPUs
• Multi-GPU runs: Affinity and binding to CPUs and GPUs on Polaris
• Hands-on Example
• Debugging
• Q&A / Open work

Argonne Leadership Computing Facility16

Questions?

Argonne Leadership Computing Facility17

Backup

Argonne Leadership Computing Facility18

OpenMP and the loop directive
• Added in OpenMP 5.0
• Similar to “distribute” and “for”, it workshares loop iterations
• It also asserts that loop iterations can be run in any order (are independent)
• Can provide a performance advantage (specifically with the Nvidia compiler, which supports it

well)

#pragma omp target teams distribute parallel for
 for (size_t j=0; j<num; j++) {
 a[j] = a[j]+scalar*b[j];

 }

#pragma omp target teams loop
 for (size_t j=0; j<num; j++) {
 a[j] = a[j]+scalar*b[j];

 }

Argonne Leadership Computing Facility19

How to use OpenMP – Execution Mapping
• League of teams

• Runs across SMs, global memory
• One team of threads

• Runs in one SM, shared memory
• One thread

• Runs on a cuda core in an SM, local memory and registers

CUDA DPC++ OpenMP
CUDA thread Work-item OpenMP thread
Warp Sub-group --
Thread block Work-group team

