October 10-12, 2023

ALCF Hands-on HPC Workshop

Integrating AI/ML and Simulation ALCF Hands-On HPC Workshop, October 10 - 12, 2023

Riccardo Balin Postdoctoral Appointee, ALCF October 11, 2023

Riccardo Balin

- Postdoctoral appointee, ALCF
- Interests and expertise:
 - -Computational fluid dynamics and turbulence modeling
 - Simulations and modeling of complex turbulent flows for aerodynamic applications
 - -Scientific ML and applications to CFD for closure and surrogate modeling, and flow state compression
 - Coupling simulations and AI/ML for scalable online learning workflows on HPC clusters

Why Couple HPC Simulations and AI/ML?

- Substitute inaccurate or expensive components of simulation with ML models

 Closure or surrogate modeling
- Control simulation with ML
 - -Select numerical scheme or input parameters
- Avoid IO bottleneck and disk storage issues
 - -Online training through data streaming and in-memory storage
- Fine tune models online
 - -Access training data not available during pre-training offline
- Active learning

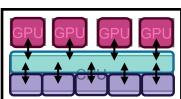
-Continuous improvement of ML model training as simulation progresses

How to Couple HPC Simulations and AI/ML?

Physical Proximity

- Components share the same node •
- Components use different nodes on the same system •
- Components are run on separate specialized systems •

Heterogeneous HPC node Simulation rank GPU GPU GPU ML component Database Data transfer CPU Same Nodes **Different Nodes** CPU Machine interconnect GPU GPU GPU GΡι CPU Machine GPU GPL GPU GPU interconnect



Balin et al., arXiv:2306.12900, 2023.

Argonne 📣

5 Argonne Leadership Computing Facility

Childs et al., "A terminology for in situ visualization and analysis systems", Intl. Journal of High Performance Computing Applications, 2020

How to Couple HPC Simulations and AI/ML?

Data Access

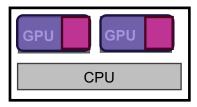
- Direct: components share same memory space (may allow for zero-copy data transfer)
- Indirect: components use distinct logical memory (requires data copy and may require data transfer)
- Either way, requires frequent memory synchronization

How to Couple HPC Simulations and AI/ML?

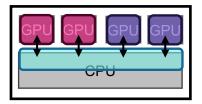
Execution Management

- Time division (tight coupling)
 - Components run on same compute resources (may even use same processes)
 - -Staggered in time, execution of one component halts the other
 - -May allow for direct memory access and no data copy/transfer
 - -Idle time of individual components may be significant
- Space division (loose coupling)
 - -Components run on separate compute resources
 - -Concurrent in time, both components run simultaneously
 - -Minimal idle time of components for fast data copy/transfer
 - -Usually requires indirect memory access with data copy/transfer

Time Division: Same Compute Resource



Space Division: Same Node



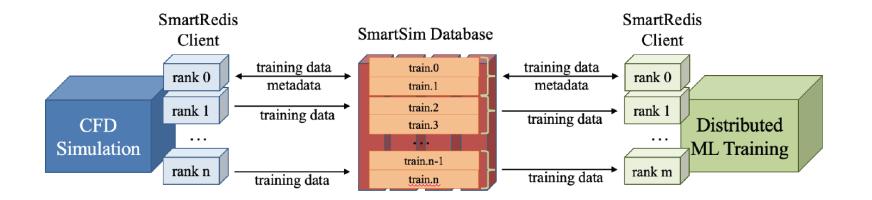
Childs et al., "A terminology for in situ visualization and analysis systems", Intl. Journal of High Performance Computing Applications, 2020

Software for Coupling Simulations and AI/ML

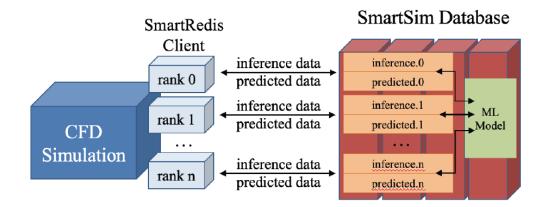
- Tight coupling
 - -Python and ML frameworks embedding into simulation code
 - <u>PythonFOAM</u>, <u>TensorFlowFOAM</u> and nekRS (by Romit Maulik, Saumil Patel, Bethany Lusch at ALCF)
 - -Linking to LibTorch or ONNX Runtime libraries for ML inferencing from C, C++ and Fortran
 - Aurora will support LibTorch and Intel's OpenVINO inference library
 - -Usually more performant and preferred for inferencing (ML model deployment within simulation)
- Loose or no coupling
 - -<u>SmartSim</u> / <u>SmartRedis</u>
 - Workflow manager and client libraries for in-situ workflows by sharing data across a database
 - -ADIOS2
 - Same I/O API to transport data across different media (file, wide-area-network, in-memory staging, etc.), favoring asynchronous streaming
 - -Dragon
 - Run-time library for managing dynamic processes, memory, and data at scale through high-performance communication
 - -Usually preferred for training thanks to concurrency and greater flexibility of workflow

- Open source tool developed by HPE designed to facilitate the integration of traditional HPC simulation applications with machine learning workflows
- Infrastructure library (IL)
 - -Python API to start, stop and monitor HPC applications from Python (workflow driver)
 - -Interfaces with the scheduler launch jobs (PBSPro on Polaris and Cobalt on Theta/ThetaGPU)
 - -Deploys a distributed in-memory database called the Orchestrator
- SmartRedis client library
 - -Provides clients that connect to the Orchestrator from Fortran, C, C++, Python code
 - The client API library enables data transfer to/from database and ability to load and run JIT-traced Python and ML runtimes acting on stored data

- Online training of ML models from ongoing simulation
 - —Data flows from the data producer (e.g., a numerical simulation) through the SmartSim database to the data consumer (e.g., a distributed training program)
 - —Simulation and the ML training run simultaneously
 - -Training data stored in-memory within database for duration of job, no I/O bottleneck and disk storage issues
 - -Fully decoupled components run independently, without blocking and on separate resources
 - -Can connect multiple components through the database



- Online inference of ML models
 - -Simulation sends/retrieves model inputs and outputs and evaluates ML models on data within database
 - -Compatible with TensorFlow, TensorFlow Lite, Torch, and ONNX Runtime backends for model evaluations
 - -Supports model evaluation on CPU and GPU
 - -Loosely coupled components run on separate resources but inference blocks simulation progress



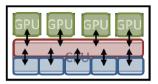
- Scalable colocated deployment •
 - —Database, simulation and ML component share resources on each node
 - —Distinct database is deployed on each node
 - —Highly scalable constant overhead from data transfer to/from database!
 - —Good use of node compute resources
 - —Training/inference data is distributed across the various databases, accessing off-node data is non-trivial

GPU

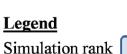
Database

Training rank

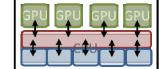
Data transfer

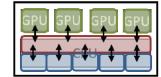


Co-located DB

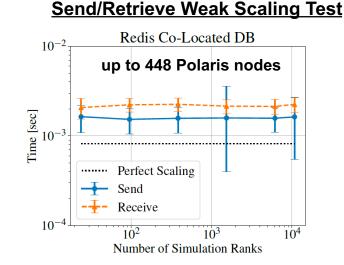


CPU

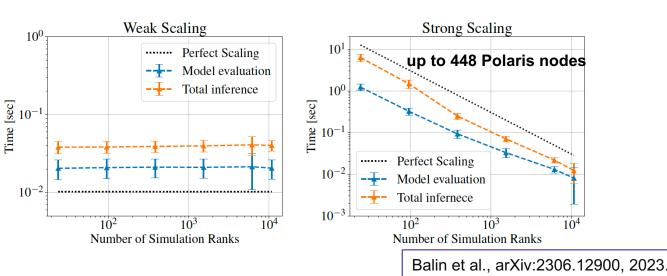




Argonne 🦨



Argonne Leadership Computing Facility 12



Feel free to follow along by pulling material from workshop repo

git clone https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop.git

OR if already cloned the repo git pull origin master

Then, switch to demo directory and submit interactive job cd couplingSimulationML/NekRS-ML ./subInteractive.sh

Environment Setup

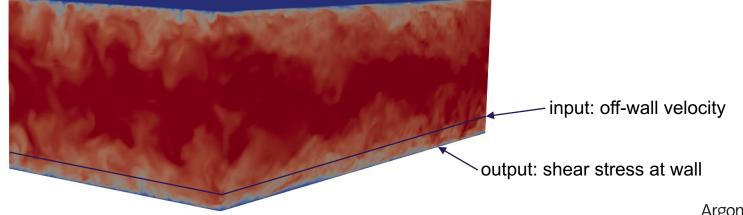
- Conda environment with the SmartSim modules for Polaris is available in the workshop project folder
- Demos use this environment
- Activate with

module load conda/2022-09-08

conda activate /eagle/projects/fallwkshp23/SmartSim/ssim

- Note:
 - This conda env does not contain all the modules available with the base env from the conda/2022-09-08 module, but many of the essential ones for distributed training
 - New env and instructions based on latest conda module is coming soon, along with more instructions on Polarid documentation
 - -More information on this env and building it are found at the workshop repo

- Goals:
 - -Use SmartSim/SmartRedis to train an ML model from ongoing CFD simulation
 - -Call model from CFD code for inference
 - -Make use of GPU on Polaris nodes
- Using an in-house fork of nekRS, called <u>nekRS-ML</u>
 - -nekRS is a popular, efficient and scalable code tested on Polaris and Aurora
 - -nekRS-ML is ALCF sandbox for various approaches of integrating code with ML
- Performing wall-modeling
 - -Estimate the wall-shear stress of a turbulent channel flow from the velocity at a location above the wall



<u>Turbulent Channel Flow at $Re_{\tau} = 550$ </u>

Training example

• From interactive session

cd train_example

source env.sh

./run.sh

OR submit batch script

cd train_example qsub submit.sh

- Both nekRS and training run in parallel and on GPU of same node
- Database deployed on CPU

nekRS rank Database		ML rank Data transfer	 □ ↔
GPU	GPU		

• Training data sent to database every 10 time steps

<u>nekrs.out</u>

copying solution to nek Sending field with key x.0.10 Done

Sending time step number ... Done

16 Argonne Leadership Computing Facility

Inference example

- From interactive session
- cd inference_example

source env.sh

./run.sh

OR submit batch script
 cd inference_example

qsub submit.sh

<u>nekrs.out</u>

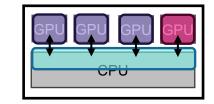
Sending field with key x.0 Done Running ML model ... Done

```
Retrieving field with key y.0
Done
```

17 Argonne Leadership Computing Facility

- nekRS runs in parallel on 3 GPU
- Inference performed on 4th GPU through database
- Database deployed on CPU

nekRS rank 🔲	ML inference 📒
Database	Data transfer ↔



• Inference performed every 10 time steps

- More details on training and inference examples available at workshop repo
 - -SmartSim driver script managing workflow and deploying components
 - -How to scale out to multiple nodes

Thank you, any questions?

Please direct any additional questions to support@alcf.anl.gov