Argonne Training Program on Extreme-Scale Computing

ATPESC 2024 Application Overview w/Q&A


Ray Loy ATPESC Program Director

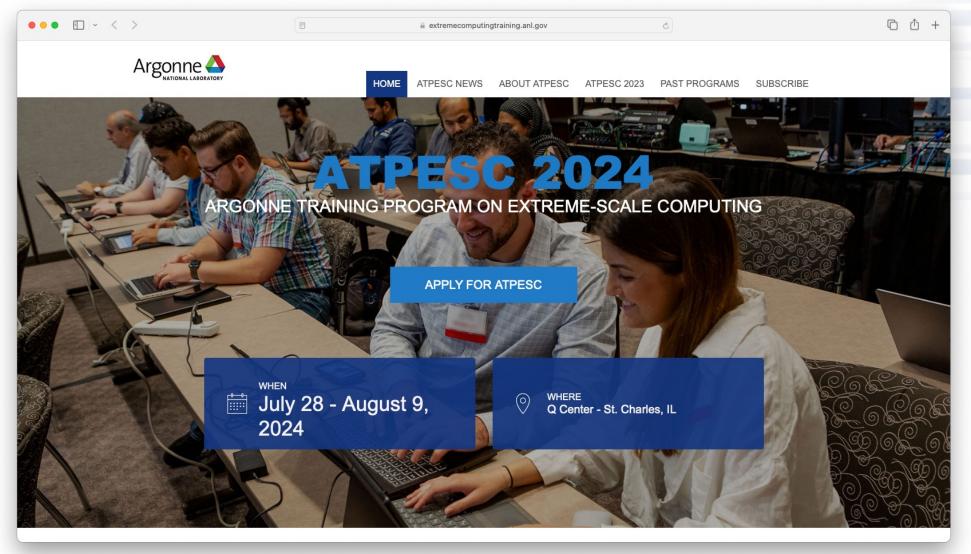
extremecomputingtraining.anl.gov

Outline

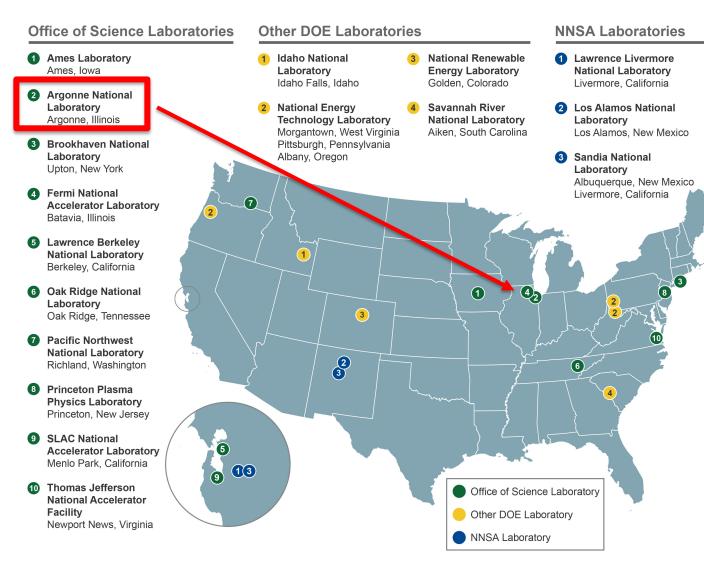
Motivation for ATPESC

 Today's most powerful supercomputers have complex hardware architectures and software environments

- and even greater complexity is on the horizon on next-generation and exascale systems
- The scientific and engineering applications developed for these systems are themselves complex
- There is a critical need for specialized, in-depth training for the computational scientists poised to facilitate breakthrough science and engineering using these systems


ATPESC Overview

- Founded by Paul Messina in 2013
- Conceived as a 2-week retreat
- Renowned computer scientists and HPC experts from US national laboratories, universities, and industry serve as lecturers and guide hands-on sessions.
- Target audience: advanced doctoral students, postdocs, and early career computational scientists
- No fee to participate. Domestic travel, meals, and lodging provided.
- Competitive application process reviewed by committee
 - Must have experience in MPI and/or OpenMP and/or Data Science frameworks
 - Experience with at least one HPC system
 - Concrete plans to conduct CSE research on large-scale computers


ATPESC Website

extremecomputingtraining.anl.gov

Argonne – a part of DOE National Laboratory System

Source: https://science.energy.gov/~/media/ /images/laboratories/DOE Laboratories Map 2014 Hi-res.jpg

Together, the **17 DOE laboratories** comprise a preeminent federal research system, providing the Nation with strategic scientific and technological capabilities. The laboratories:

- Execute long-term government scientific and technological missions, often with complex security, safety, project management, or other operational challenges;
- Develop unique, often multidisciplinary, scientific capabilities beyond the scope of academic and industrial institutions, to benefit the Nation's researchers and national strategic priorities; and
- Develop and sustain critical scientific and technical capabilities to which the government requires assured access.

Major Scientific User Facilities at Argonne

Argonne Tandem Linear Accelerator System

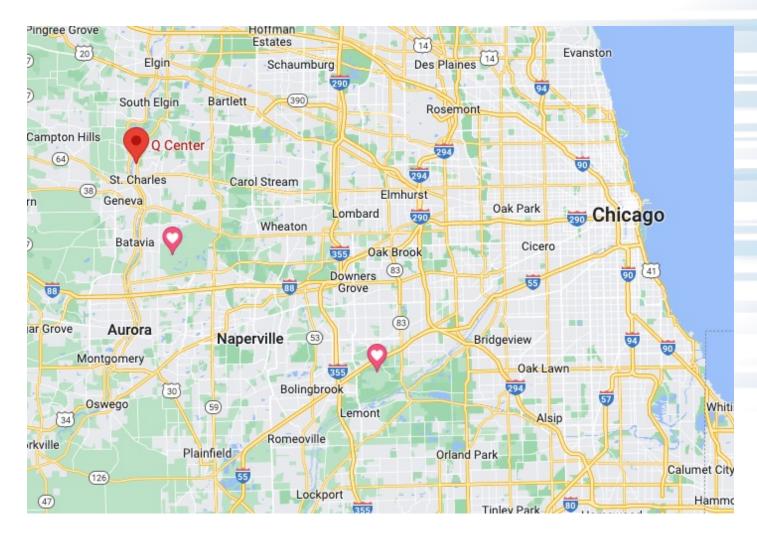


Center for Nanoscale Materials

Argonne Leadership Computing Facility Aurora

Electron Microscopy Center

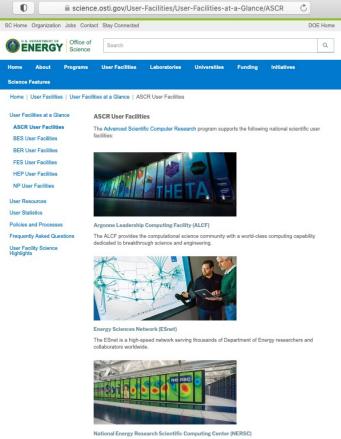
Argonne


NATIONAL LABORATORY

ATPESC 2024 Venue

Q Center

ATPESC 2023


Curriculum Tracks (2023)

Over 100 hours of content

- Track 1: Hardware Architectures
- Track 2: Programming Models and Languages
- Track 3: Data-intensive Computing and I/O
- Track 4: Visualization and Data Analysis
- Track 5: Numerical Algorithms and Software for Extreme-Scale Science
- Track 6: Performance Tools and Debuggers
- Track 7: Software Sustainability
- Track 8: Machine Learning and Deep Learning for Science

ATPESC Computing Resources

The NERSC is the mission high performance computing facility for the Department of Energy's Office of Science, and is a world leader in accelerating scientific discovery through computation.

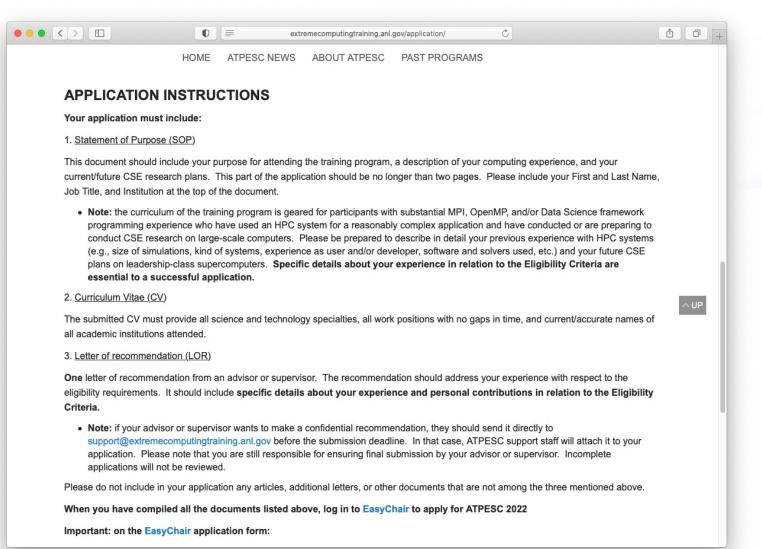
Oak Ridge Leadership Computing Facility (OLCF) The OLCF provides the computational science community with world-class computing capability dedicated to breakthrough science and engineering. ALCF – Polaris and ThetaGPU

OLCF - Ascent

NERSC – Perlmutter, et al.

(Vendor resources – e.g. Intel Devcloud

Goals for Attendees



Talk F2F with Lecturers, other Participants, Support

Application Instructions

"Doctoral students, postdocs, and computational scientists interested in attending ATPESC can review eligibility and application details on the application instructions web page."

- These are the most common applicants but in general, anyone who is qualified and who would benefit from the program may apply.
- If your situation is unusual, just address that in your Statement of Purpose.

Eligibility

- Substantial experience in MPI and/or OpenMP programming. Equivalent experience with Data Science frameworks will also be considered.
- Experience using at least one HPC system for a reasonably complex application.
- Plans to conduct computational science and engineering (CSE) research on large-scale computers.

Application Components

- Statement of Purpose
- Curriculum Vitae (CV)
- Letter of Recommendation (LOR)

Provide details

The #1 problem a reviewer faces is trying to guess your qualifications when the materials are not clear.

1. Substantial experience in MPI and/or OpenMP programming. Equivalent experience with Data Science frameworks will also be considered.

- Weak statements
 - "I took a class on MPI"
 - "I ran a code that uses MPI"
- Stronger statements
 - "I work on the NNN code. I implemented and tested the message-passing routines for the boundary exchange of the MMM solver which has a communication pattern that exchanges between... taking into account.... Benchmarking of performance showed..."
- If you are part of a group-developed code or working on a community code, be specific about your individual contribution.

Experience using at least one HPC system for a reasonably complex application.

- We do not expect that you have access to a world-class system
 - University/corporate clusters are relevant
- Be clear if you are developing code and running it vs. running an existing code
- What types of runs have you accomplished?
 - Core/node counts are informative
 - Did you perform scaling studies or other performance inquiries?
- What type of queuing system(s) were involved?
 - Did you construct job scripts?
 - Did you run a large campaign and employ any workflow techniques to manage jobs?

Plans to conduct computational science and engineering (CSE) research on large-scale computers.

- The training should be put to good use
- What is your current situation?
 - Are you currently part of a research effort?
- Where are you headed in your career?
 - If you are a student, what positions are you applying to?
 - How do you expect your current work to carry over?

ATPESC Communications

- Subscribe to "info" mailing list linked from the homepage
 - <u>https://extremecomputingtraining.anl.gov</u>
 - Menu tab at top right -or- button at bottom of page
- Direct inquiries to
 - support@extremecomputingtraining.anl.gov

This training is supported by, and uses resources of, the Argonne Leadership Computing Facility, a U.S. Department of Energy (DOE) Office of Science user facility at Argonne National Laboratory and is based on research supported by the U.S. DOE Office of Science-Advanced Scientific Computing Research Program, under Contract No. DE-AC02-06CH11357.

Questions/Discussion

