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ALCF Incite Hackathon 2025
e 2025 ALCF INCITE GPU Hackathon (20-May 22, 2025)

e LLMs on Auroral;

» QO Hands-On: ezpz
= B Overview: AuroraGPT

1. my talks can be found at: https://samforeman.me/talks/incite-hackathon-2025
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@ AuroraGPT: Goals

AuroraGPT: General purpose scientific LLM
Broadly trained on a general corpora plus scientific
{papers, texts, data}

e Explore pathways towards a “Scientific Assistant” model
e Build with international partners (RIKEN, BSC, others)

e Multilingual English, , French, German, Spanish

e Multimodal: images, tables, equations, proofs, time series, Figure 1: Image from Hannibal046 / Awesome-LLM
graphs, fields, sequences, etc

_ _ Advanced Scientific
Text-only Models Basic Multimodal Models Multimodal Models
(2023/2024) (2024/2025) (2025/2026)

Figure 2: Credit to the entire AuroraGPT team for slides.
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4 Issues with “Publicly Available” LLMs
e Trust and Safety:

m Skepticism about deployment in critical infrastructure
= Correctness and reliability of model outputs
e Transparency:
= Data governance, what was used for pre-training? fine-tuning?
o generally unknown
= What is open source?
o Model weights?

o Pre-training {code, logs, metrics} ?
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Figure 3: High-level overview of AuroraGPT project
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il AuroraGPT: Outcomes
o Datasets and data pipelines for preparing science training data

o Software infrastructure and workflows to train, evaluate
and deploy LLMs at scale for scientific resarch purposes

s () argonne-lcf/Megatron-DeepSpeed
End-to-end training and inference, on any GPU cluster

» () argonne-Icf/inference-endpoints
Inference endpoints for LLMs, hosted @ ALCF

e Evaluation of state-of-the-art LLM Models:

= Determine where they fall short in deep scientific tasks

= Where deep data may have an impact
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¥ What do we hope to get?

e Assessment of the approach of augmenting web training data with two forms of
data specific to science:

= Full text scientific papers
m Structured scientific datasets (suitably mapped to narrative form)

o Research grade artifacts (models) for scientific community for adaptation for
downstream uses?

e Promotion of responsible Al best practices where we can figure them out

o International Collaborations around the long term goal of AGI for science

1. (Dharuman et al. 2024)
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B Aurora

Table 1: Aurora Specs

Racks 166
Nodes 10,624
CPUs 21,248
GPUs 63,744
NICs 84,992
HBM 8 PB

DDR5c 10PB

Figure 4: Aurora: Fact Sheet.

Y Fastest Al system in the world
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& ALCF AI Testbed

o ALCF AI Testbed Systems are in production and available for allocations to the
research community

e Significant improvement in time-to-solution and energy-efficiency for diverse Al
for science applications.

e NAIRR Pilot

Up to =~ 25X throughput improvement for genomic FMs with 6.5 X energy efficiency

Figure 6: Graphcore Bow: Pod-64 . ) ) .
configuration with 64 accelerators Figure 7: Cerebras: 2x CS-2 WSE  Figure 8: GrogRack: 9 nodes, 8

Figure 5: SambaNova SN-30 2nd

Gen, 8 nodes with 64 Al with Memory-X and Swarm-X

GroqChip v1.5 Tensor streaming
Accelerators technologies

processors accelerators per node
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2% Team Leads

Planning

Rick Stevens? Tan Foster Rinku Gupta Mike Papka Arvind Ramanathan Fangfang Xia

Data Training Evaluation Post Inference Comms Distribution

—
. "
-

Eliu Huerta Rajeev Thakur  Charlie Catlett Brad Ullrich

Robert Underwood Sam Foreman Azton Wells David Martin

Bo Li

1. Lead
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7 Teams

e Planning e Post-Training

e Data Prep = Fine-tuning, alignment
= Accumulate 20+ T tokens of high- e Inference

quality scientific text and structured Model serving, API development /

data public-facing web services
e Models / Training’ e Distribution
= Train (entirely from scratch) a series Licensing, generating and
of models on publicly available data distributing artifacts for public
e Evaluation consumption
= Skills, trustworthiness, safety, e Communication

robustness, privacy, machine ethics

1. Co-led by: Venkat Vishwanath, Sam Foreman
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¥ Data

Goal: Assemble a large corpus of documents (general and scientific) to train
and fine-tune AuroraGPT models

e Challenges: Avoid / detect contamination with benchmarks
m Respect copyright (ACM Digital Library), privacy, and ethical considerations
e Performance Challenges: High throughput data processing

m Converting PDF — text (math formula, figures)
m Convert science information (data) into text (narratives)

= De-duplication (syntactic and semantic) of scientific documents (to avoid
memorization, bias)

e Quantity: Considering 20+ Trillion tokens —~ 100M papers
e Domains: All (long-term) scientific domains, starting with:
m Material science, Physics, Biology, Computer Science, Climate Science
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© Dataset Processing
e To train a fixed model on trillions of tokens requires:

1. Aggregating data from multiple different corpora
(e.g. ArXiv, Reddit, StackExchange, GitHub, Wikipedia, etc.)

2. Sampling each training batch according to a fixed distribution across corpora

3. Building indices that map batches of tokens into these files (indexing)

The original implementation was slow:
= Designed to run serially on a single device

= Major bottleneck when debugging data pipeline at scale
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% Accelerating Dataset Processing: Results

e Original implementation: Data Pre-Processing Times

= Slow! Bl Original H New
3972

m @ ~ 1 hr/2T tokens 3643 3685
- 4
o MAFix: 3277 “u
= Wrote asynchronous,
distributed
Implementation -
m significantly improves
performance (30x !!)
s £ o
< ~ 2 min/2T token
- 2 min/2T tokens o5 27 97 91 87
_— [ ] I I I
1 2 4 8 16

Number of Aurora nodes

Time (s)

Figure 9: Time spent preparing 2T tokens
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‘W Model Training

Goals

e Want training runs at scale to be:
m efficient
= stable
m reproducible
e This requires:
= robust data pipelines / file IO

m effectively overlapping compute with
communication

m stability across {network, filesystem, machine}
e 3D/ Multi-dimensional Parallelism strategies
e Large batch training
e Second order optimizers
e Sub-quadratic attention
e State space models
e Highly optimized GPU kernels

X Challenges

e [ooong time to train, can be:
= weeks (even months) of continuous training

m order of magnitude longer than typical NN
training jobs

e Stability issues:
= failures are expensive (but inevitable)
m stragglers common at scale
e Individual jobs are:
fragile
only as good as the worst rank
one hang or bad worker can crash job
network / filesystem / other-user(s) dependent

e Cost / benefits of different collective communication
algorithms

= depend on optimized / efficient implementations
e Network performance
e Highly optimized GPU kernels

argonne-lcf / Megatron-DeepSpeed

samforeman.me/talks/incite-hackathon-2025/AuroraGPT/slides
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2\ Loss Curve: Training AuroraGPT-7B on 2T Tokens

3.0
Train

— Val
2.8

1.8

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Consumed Tokens (T)

Figure 10: Loss curve during training on 2T tokens.
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2 Evaluating FM Skills for Science

e \What to measure?

= Knowledge Extraction, Retrieval, Distillation, Synthesis: LLM is provided a
question or instruction and a truthful answer is expected

= Text Grounded: Answers are expected to be fully grounded on peer-reviewed
references to support responses

= Reasoning: LLMs are expected to solve deductive (prove a theory or
hypothesis from formal logic and observations), inductive (validate / explain
observations from theories) problems

= Creativity: A creative answer is expected from a question or instruction

o thoughtful dialogue, coding, etc.

samforeman.me/talks/incite-hackathon-2025/AuroraGPT/slides Al .




_ Evaluating FM Skills for Science: Criteria

e Criteria for all of the above:

Correctness of facts

Accuracy of solutions and inferences

Reliability consistently good in quality or performance
Speed how fast to produce a response

# shots how many examples are needed for good quality

o Extent of prompt engineering
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s” MProt-DPO: Scaling Results

20

3.5B Model e ~4EFLOPS @ Aurora

4

EFLOPS

Aurora
ALPS

PDX
Leonardo
—— SEQ=512
------ SEQ=1024

64 128 256 512 1024 2048 3200
Nodes

Figure 11: Scaling results for 3.5B model across ~38,400 GPUs
1. (Dharuman et al. 2024)

0.1
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e 38,400 XPUs
= 3200 [node] x 12 [XPU / node]

e A Gordon Bell Finalist?:
= MProt-DPO: Breaking the

ExaFLOPS Barrier for
Multimodal Protein Design
Workflows
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& References

e () argonne-lcf / Megatron-DeepSpeed o ** See also:
For the largest of large language
models.

m New international consortium for
generative AI models for science

’ er—emL?—z.F)—z = PyTorch Distributed Overview
Distributed training, ezpz. o

= © Ffficient Training on Multiple
e il See my other slides at GPUSs

samforeman.me/talks:
m | [ Ms from Scratch

= Creating Small(~ish) LLMs

m Getting Started - DeepSpeed

. Quality Measures for Dynamic
Graph Generative Models
= Parallel Training Techniques (Hosseini et al. 2025)

m LLMs on Polaris

m Training LLMs at Scale
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¥ Thank you!

e Organizers

e Feel free to reach out!
ALY
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<" MProt-DPO: Scaling Results
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~Z Loooooooooong Sequence Lengths
X

e Working with team to enable longer sequence lengths (context windows) for LLMs

= See my for additional details

SEQ_LEN 258 33B



¢7 Life Cycle of the LLM

Z Pre-training

% Fine-Tuning

Unsupervised Pre-training
/ \ Correct output (label):

Input (features) a robot must -

| I
| I
| I
| I
I Output (Prediction) I
| I
I l

Figure 15: Pre-training: Virtually all of the compute used during pretraining phase
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@ Training LLMs

May God forgive us for what we have done

Training LLMs

It hungers

Lovecraft

O'RLY?

Figure 17: It’s hungry!
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Figure 18: Visualization from Yang et al. (2023)
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