ALCF Hands-on HPC Workshop

September 23-25 & October 7-9, 2025 Argonne National Laboratory

HPC Development Solutions from Linaro

Best in class commercially supported tools for Linux and high-performance computing (HPC)

Linaro Forge combines

Performance
Engineering for
any architecture,
at any scale

DDT Supported Platforms

Works across hardware architectures and HPC technologies

DDT UI

Intuitive and scalable user interface

- 1 Process controls
- 2 Process groups
- 3 Source Code view
- 4 Variables
- 5 Evaluate window
- 6 Parallel Stack
- 7 Project files
- 8 Find a file or function

Linaro DDT Debugger Highlights

Debugging Intel Xe GPUs

Using Linaro DDT

Debug code simultaneously on the GPU and the CPU

- Controlling the GPU execution:
 - All active threads in a Sub-group will execute in lockstep. Therefore, DDT will step16 threads at a time.
 - Play/Continue runs all GPU threads
 - Pause will pause a running kernel
- Key (additional) GPU features:
 - Kernel Progress View
 - GPU thread in parallel stack view
 - GPU Thread Selector
 - GPU Device Pane

Kernels must be compiled with the -g and -O0 flags

Parallel Stack View

Display location and number of threads

- Display location and number of threads
- Click Item:
 - Select GPU Thread
 - Update variable display
 - Move source Code Viewer
- Tooltip displays:
 - GPU Thread Ranges
 - Size of each range

Python Debugging

Debug Features

- Sparklines for Python variables
- Tracepoints
- MDA viewer
- Mixed language support

Improved Evaluations:

- Matrix objects
- Array objects
- Pandas DataFrame
- Series objects

Python Specific:

- Stop on uncaught Python exception
- Show F-string variables
- Mpi4py, NumPy, SciPy

ddt --connect mpiexec -n 8 python3 %allinea_python_debug% ./mmult.py

DDT in offline mode

Run the application under DDT and halt or report when a failure occurs

You can run the debugger in non-interactive mode

- For long-running jobs / debugging at very high scale
- For automated testing, continuous integration...

To do so, use following arguments:

- \$ ddt --offline --output=report.html mpirun ./jacobi_omp_mpi_gnu.exe
 - o --offline enable non-interactive debugging
 - --output specifies the name and output of the non-interactive debugging session (HTML or Txt)
 - Add --mem-debug to enable memory debugging and memory leak detection

MAP and Performance Reports Supported Platforms

Works across hardware architectures and HPC technologies

Linaro Performance tools

Characterize and understand the performance of HPC application runs

Gather a rich set of data

- Analyses metric around CPU, memory, IO, hardware counters, etc.
- Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness

- Analyses data and reports the information that matters to users
- Provides simple guidance to help improve workloads' efficiency

Relevant advice to avoid pitfalls

Adds value to typical users' workflows

- Define application behaviour and performance expectations
- Integrate outputs to various systems for validation (eg. continuous integration)
- Can be automated completely (no user intervention)

9 Step guide for optimising code

Linaro Performance Reports

A high-level view of application performance with "plain English" insights

arm Formance Command:

mpiexec.hydra -host node-1,node-2 -map-by socket -n 16 -ppn 8 ./Bin/low_freq/../../Src//hydro

-i

PERFORMANCE REPORTS ./Bin/low_freq/../../../Input/input_250x125_corner.nml

Resources: 2 nodes (8 physical, 8 logical cores per node)

Memory: 15 GiB per node

Tasks: 16 processes, OMP_NUM_THREADS was 1

Machine: node-1

Start time: Thu Jul 9 2015 10:32:13

Total time: 165 seconds (about 3 minutes)

Full path: Bin/../Src

1/0

A breakdown of the 16.2% I/O time:

Time in reads 0.0%

Time in writes 100.0%

Effective process read rate 0.00 bytes/s

Effective process write rate 1.38 MB/s

Most of the time is spent in write operations with a very low effective transfer rate. This may be caused by contention for the filesystem or inefficient access patterns. Use an I/O profiler to investigate which write calls are affected.

Summary: hydro is MPI-bound in this configuration

Time spent running application code. High values are usually good. This is **very low**; focus on improving MPI or I/O performance first

Time spent in MPI calls. High values are usually bad.

This is high; check the MPI breakdown for advice on reducing it

Time spent in filesystem I/O. High values are usually bad.

This is average; check the I/O breakdown section for optimization advice

Linaro Performance Reports Metrics

Lowers expertise requirements by explaining everything in detail right in the report

MAP Capabilities

MAP is a sampling based scalable profiler

- Built on same framework as DDT
- Parallel support for MPI, OpenMP, CUDA
- Designed for C/C++/Fortran

Designed for 'hot-spot' analysis

- Stack traces
- Augmented with performance metrics

Adaptive sampling rate

- Throws data away 1,000 samples per process
- Low overhead, scalable and small file size

MAP Highlights

GPU profiling

Profile

- Supports both AMD and Nvidia GPUs
- Able to bring up metadata of the profile
- Mixed CPU [green] / GPU [purple] application
- CPU time waiting for GPU Kernels [purple]
- GPU Kernels graph indicating Kernel activity

GUI information

- GUI is consistent across platforms
- Zoom into main thread activity
- Ranked by highest contributors to app time

Python Profiling

19.0 adds support for Python

- Call stacks
- Time in interpreter

Works with MPI4PY

Usual MAP metrics

Source code view

Mixed language support

Note: Green as operation is on numpy array, so backed by C routine, not ——Python (which would be pink)

map --profile mpiexec -n 2 python ./diffusion-fv-2d.py

Compiler Remarks

Annotates source code with compiler remarks

- Remarks are extracted from the compiler optimisation report
- Compiler remarks are displayed as annotations next to your source code

Colour coded

- Their colour indicates the type of remark present in the following priority order:
- Red: failed or missed optimisations
- Green: successful or passed optimisations
- White: information or analysis notes

Compiler Remarks menu.

- Specify build directories for non-trivial build systems
- Filter out remarks


```
if ((first + j - 1 == 1) || (first + j - 1 == tpoints))

newval(j) = 0.0;
else

43.6% **Mathematical transferrance**

43.6% **Mathematical transfe
```


MAP Thread Affinity Advisor

Global (launcher) environment variables List of Environment Variables which were

List of Environment Variables which were set at launch which might be relevant to how threads are distributed.

Snapshot Selector

Change at which point of a run the Affinity data is shown (*Library Load, Initialisation, Finalization*).

Exemplar Nodes

Selectable list of exemplars, allowing ability to switch data between nodes of a run. Nodes with similar affinity/structures are merged.

Processes List

List of processes (by MPI rank) of the selected exemplar. Shows the key for the node topology diagram and selecting one shows all threads for the process.

Threads List

List of all threads for the selected process. Selecting threads highlights which cores they are bound to in the topology view.

Commentary

A list of commentary, providing information and advice on Memory Imbalance, Core Utilization etc.

Differences between two profiles

MAP Diff (--baseline support)

- MAP Diff allows comparisons of two MAP profiles, useful for identifying performance changes between different parameters, compilers, libraries and systems.
- Use the alignment points view (1) to line up phases of execution.
- Compare metric graphs of the two profiles (2), including metric summaries for each.
- See gaps in activity in the source code viewer (3) and stacks views (4), including OpenMP Regions View, Functions View, Library view and GPU Kernels/Memory Transfer View.

Debug with DDT on Aurora

```
mpicxx - fsycl - g - 00 < application > -o < application - name > \\ qsub - l select = 2 - l walltime = 30:00 - l filesystems = flare - A < account > -q < queue > -I \\ ./soft/compilers/oneapi/2025.1.0/debugger/2025.1/env/vars.sh \\ \text{https://docs.alcf.anl.gov/aurora/debugging/ddt-aurora/#invoking-the-ddt-server-from-aurora} \\ ddt --np = 24 --connect --mpi = generic --mpi args = "--ppn 12 --envall" ./<application > 0 < application > 0 < appl
```


Cheat sheet (Polaris)

Training material

Getting the examples
 google-drive
 tar -xf linaro-forge-training.tar.gz

2. Set the path to the forge training folder export FORGE_TRAINING=<path_to_training_folder>

Forge Client (On local machine)

Install Forge client https://www.linaroforge.com/downloadForge

Running with a batch script

qsub \$FORGE_TRAINING/submit-polaris.sh

Interactive Session

qsub -I -l select=1 -l filesystems=home:eagle -l walltime=0:30:00 -q alcf_training -A alcf_training

module use /soft/modulefiles module load forge cray-cti/2.19.0

Forge commands

ddt --connect # Reverse connect
ddt --offline # Run DDT without GUI
map --profile # Profile without GUI
perf-report # Generate Performance Report

Guides

Forge userguide

The Forge GUI and where to run it

Forge provides a powerful GUIs that can be run in a variety of configurations

Remote connection to Polaris

Debugging (Polaris)

```
1. build deadlock, simple, memory_debugging and split examples
  cd $FORGE_TRAINING/correctness/debug
  make
2. Get an interactive session
  qsub -I -I select=1 -I filesystems=home:eagle -I walltime=0:30:00 -q alcf_training -A alcf_training
  module use /soft/modulefiles
  module load forge cray-cti/2.19.0
3. split
  ddt --connect mpiexec -n 16 ./split
4. 2_layer_net.py
  FORGE MPIRUN=torchrun
  FORGE_STOP_AT_MAIN=1 FORGE_MPIRUN_OMIT_NUMBER_OF_PROCESSES=1
  ddt --connect --np 2 --mpi="generic"
  --mpiargs="--no-python --standalone --nnodes=1 --nproc-per-node=2" $(which python) %allinea_python_debug% 2_layer_net.py
```

Profiling (Polaris)

Worked Example: https://docs.linaroforge.com/23.1.1/html/forge/worked_examples_appendix/mmult/analyze.html

1. Setup the environment

```
qsub -I -I select=1 -I filesystems=home:eagle -I walltime=0:30:00 -q alcf_training -A alcf_training module use /soft/modulefiles module load forge cray-cti . .venv/bin/activate
```

- 2. Build the Python example

 cd \$FORGE_TRAINING/performance

 make -f mmult_py.makefile
- 3. Run the Python example
 map --profile mpiexec -n 8 python ./mmult.py -s 3072

Thank you

- www.linaroforge.com
- support@forge.linaro.com
- https://docs.linaroforge.com/24.0.5/html/forge/index.html

