

FRONTIER-E SIMULATION

I/O at scale for cosmological simulations like HACC

OVERVIEW

HACC on Aurora

Simulation configuration

- NP=23,760³ (over 13.4 trillion particles!)
- 500 steps
- Full range of in situ analysis
- 8100 Aurora ECBs
 - 1 MPI rank per GPU stack
- Total simulation time estimated:
 ~50 hours wall time

HPC environment

- Aurora ECB
 - 2 Intel Xeon CPU Max Series processors: 64GB HBM on each, 512GB DDR5 each
 - 6 Intel Data Center GPU Max Series,
 128GB HBM on each
 - tmpfs \tmp
 - 128 node DAOS cluster (daos_user)

CHALLENGE

I/O at Scale

- 8,100 Aurora ECBs (12 MPI ranks/node)
- 13 trillion particles ~500 TB checkpoint, keeping 3 checkpoint window, ~1-1.6 PB of total checkpoint storage
- 500 simulation steps (~6 minutes per step) affected by imbalance and clustering later in the simulation 50hr+ Wall time
- in situ analysis at 100 of the timesteps generates many small to medium files
- Estimated 4PB of total storage is needed for all data products

STRATEGY

HACC Checkpointing

```
Aurora Compute Node (12 MPI ranks)
[Rank 0]
[Rank 2] → mmap() into shared /tmp/checkpoint.NVRAM
                  (tmpfs in DRAM)
[Rank 11]
After collective flush:
Rank 0 launches async copy thread →
 LD PRELOAD=/usr/lib64/libpil4dfs.so
  dd if=$f of=/mnt/daos/<file>.NVRAM bs=64M conv=fdatasync
Simulation proceeds → next timestep while copy runs
              POSIX I/O via dfuse
       DAOS Storage Cluster
       (dfuse-mounted container)
```

STRATEGY

Checkpoint Workflow

- Each node's 12 MPI ranks memory-map (mmap) a shared file in /tmp (tmpfs).
- All ranks write their particle blocks directly into the mapped region no write() syscalls.
- The file (checkpoint.NVRAM) is **overwritten in place** each checkpoint.
- Local rank 0 spawns an asynchronous copy thread to persist data to DAOS:
 - LD_PRELOAD=/usr/lib64/libpil4dfs.so dd if=\$f
 of=\$dir/\$(basename "\$fnew") bs=64M conv=fdatasync
 status=none
- Copy uses POSIX I/O via dfuse; compute continues concurrently.
- No double buffering required compute phase exceeds copy time

DAOS CONFIGURATION ON AURORA

HACC Checkpointing

Please consult the DAOS documentation for the latest information -- results presented here may be outdated. https://docs.alcf.anl.gov/aurora/data-management/daos/daos-overview/

daos container create --type POSIX \${DAOS_POOL} \${DAOS_CONT} --file-oclass=EC_16P2GX --dir-oclass=RP_3G1 --properties=cksum:crc32,srv_cksum:on,rd_fac:2,ec_cell_sz:131072 --chunk-size=2097152

Parameter	Setting / Value	Notes / Rationale
DAOS Access Mode	POSIX via dfuse mount on /mnt/daos	Transparent integration with HACC async copy thread
Library preload	LD_PRELOAD=/usr/lib64/libpil4dfs.so	Enables high-throughput POSIX streaming through dd
Container Type	POSIX	Matches dfuse interface
Pool / Container Classes	file-oclass=EC_16P2GX /dir- oclass=RP_3G1	File data uses erasure-coding (16 data + 2 parity); directories replicated 3×
Properties	cksum:crc32, srv_cksum:on, rd_fac:2, ec_cell_sz:131072	End-to-end CRC32 verification; 128 KiB EC cell; redundancy factor 2
Chunk Size	chunk-size=2097152 (2 MiB)	Tuned to align with 64 MiB copy blocks and reduce metadata
Copy Command	dd if=\$f of=\$dir/\$(basename "\$fnew") bs=64M conv=fdatasync status=none	Block-aligned, synchronous flush for durability
File Layout per Node	1 × ~50 GB checkpoint (checkpoint.NVRAM)	12 ranks \rightarrow 1 file \rightarrow 8100 files total at 8100 nodes
Checksums	Checksums on	Verified integrity

RESULTS

Checkpoint on 8100 Aurora ECBs

Operation	Path / Target	Data Volume	Time (s)	Throughput (TB/s)
Checkpoint Read	DAOS (POSIX Read)	416 TB	_	7.57
Write to DDR (tmpfs)	Ranks → /tmp (mmap)	416.6 TB	_	237.36
Asynchronous Copy to DAOS	tmpfs → DAOS via dfuse	416 TB	111	3.75

Key Observations

- tmpfs bandwidth (237 TB/s) ≫ DAOS bandwidth → checkpoint creation fully hidden by compute.
- **DAOS copy** sustained 3.75 TB/s aggregate at 8 K nodes → scales effectively with node count.
- Read-back from DAOS achieved 7.6 TB/s → read path faster than write, confirming balanced layout.
- Effective I/O overlap: > 95 % of checkpoint time hidden behind compute.

COLLABORATIVE DEBUGGING

with DAOS Engineers

Area	Issue	Outcome / Next Step
Agents	Leftover daos_agent daemons on some nodes	Cleanup script under review with ALCF Ops
Clush	High overhead and noisy SSH output	Disabled -B, tuned SSH opts, fan- out = 512
Dfuse Mounts	8 K concurrent mounts > 20 min	Split into 1 K blocks → ~5 min total
Disconnects	Pool disconnect took 15–20 min	DAOS ticket (open)
Metrics	Mismatched connect/disconnect counts	Reported to DAOS team for follow-up

SUMMARY & ACKNOWLEDGMENTS

Hybrid I/O Design

- Node-local mmap + tmpfs enables DRAM-speed checkpoint writes.
- Asynchronous DAOS copy hides backend latency—no compute interruption.

Scalability & Performance

- Scaled to 8 K Aurora nodes, ≈ 416 TB per checkpoint.
- Sustained 3.75 TB/s write and 7.6 TB/s read through DAOS EC_16P2GX.
- Over 95 % of I/O time overlapped with simulation compute.

ACKNOWLEDGMENTS

Collaborators

- DAOS Engineering Team: Johann Lombardi, Alex Kulyavtsev, Samir Raval,
- ALCF: Paul Coffman, Kevin Harms.
- HACC Team: Esteban Rangel, Nick Frontiere, Adrian Pope,
 Michael Buehlmann, JD Emberson

