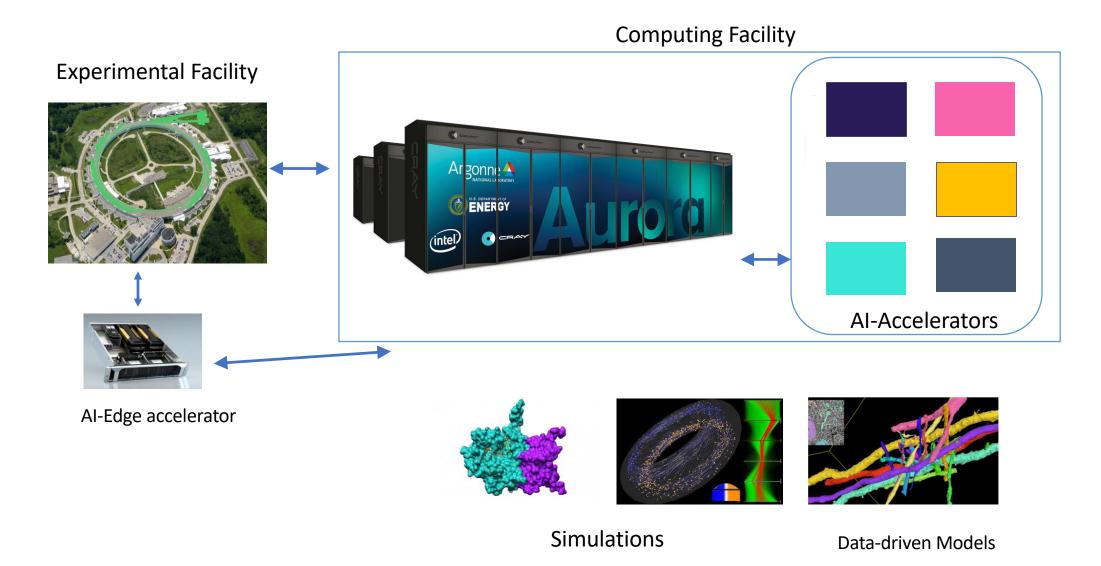


JLSE (2013)

Al Testbed (2020) Edge Testbed (2021)

Integrating AI Systems in Facilities



ALCF AI Testbeds

https://www.alcf.anl.gov/alcf-ai-testbed

Cerebras (CS-3)

SambaNova SN30/SN40L

Groq

Tenstorrent

Graphcore

Habana

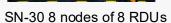
- Infrastructure of nextgeneration machines with hardware accelerators customized for artificial intelligence (AI) applications.
- Provide a platform to evaluate usability and performance of machine learning based HPC applications running on these accelerators.
- The goal is to better understand how to integrate Al accelerators with ALCF's existing and upcoming supercomputers to accelerate science insights

ALCF AI Testbed

ALCF AI Testbed Systems are in production and available for allocations to the research community

Training

- Cerebras
- Sambanova SN30



Cerebras CS-3 – 4 WSE

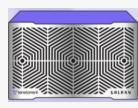
Inference

- SN40L Metis
- Groq
- Cerebras
- Tenstorrent

2 nodes of 16 SL40L RDUs

9 Groq nodes, 8 GroqChip/node (TSPs)

Cerebras CS-3 - 4 WSE

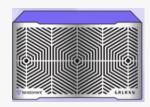


32 Wormhole GU

HPC

- Cerebras
- Tenstorrent

Cerebras CSL



32 Wormhole GU

ALCF AI Testbed

ALCF AI Testbed Systems are in production and available for allocations to the research community

Training

- Cerebras
- Sambanova SN30

SN-30 8 nodes of 8 RDUs

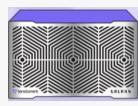
Cerebras CS-3 - 4 WSE

Inference

- SN40L Metis
- Groq
- Cerebras
- Tenstorrent

9 Groq nodes, 8 GroqChip/node (TSPs)

Cerebras CS-3 - 4 WSE

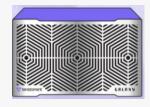


32 Wormhole GU

HPC

- Cerebras
- Tenstorrent

Cerebras CSL



32 Wormhole GU

Coming Soon!!

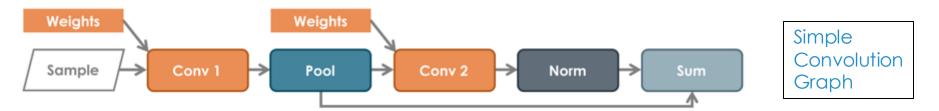
	Cerebras CS3	SambaNova Cardinal SN30 / SN40L	Groq GroqRack	GraphCo re GC200 IPU	Habana Gaudi1	NVIDIA A100
Compute Units	900,000 Cores	640/1040 PCUs	5120 vector ALUs	1472 IPUs	8 TPC + GEMM engine	6912 Cuda Cores
On-Chip Memory	44 GB SRAM, MemoryX	300/520MB Sram 0/64 GB HBM 1/1.5TB DDR	230MB L1	900MB L1	24 MB L1 32GB	192KB L1 40MB L2 40-80GB
Process	7nm	7nm	7 nm	7nm	16nm	7nm
System Size	4 Nodes Memory-X and Swarm-X	8 nodes (8 cards per node)	9 nodes (8 cards per node)	4 nodes (16 cards per node)	2 nodes (8 cards per node)	Several systems
Estimated Performance of a card (TFlops)	>5780 (FP16)	>660/638 (BF16)	>250 (FP16) >1000 (INT8)	>250 (FP16)	>150 (FP16)	312 (FP16), 156 (FP32)
Software Stack Support	Pytorch	SambaFlow, Pytorch	GroqAPI, ONNX	Tensorflow, Pytorch, PopArt	Synapse AI, TensorFlow and PyTorch	Tensorflow, Pytorch, etc
Interconnect	Ethernet-based	Ethernet-based	RealScale TM	IPU Link	Ethernet- based	NVLink

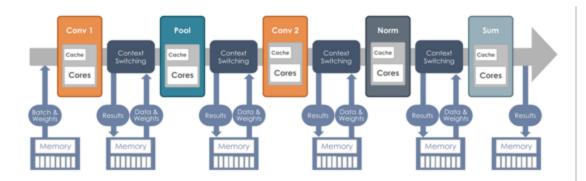
HPC Software ecosystem on Al Accelerators

GRAPHCORE

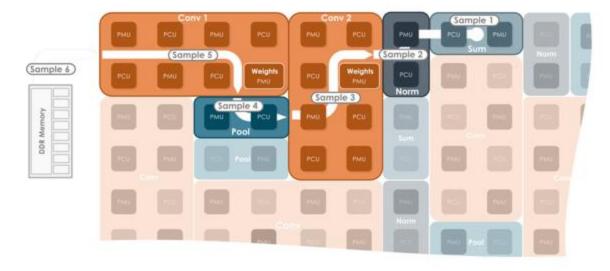
- Cerebras Software Language
- Redwood (C/C++)
- Poplar C/C++ API
- BSP
- Groq Runtime API
- C/C++
- Habana TPC
- C/C++
- OpenMP Pragmas
- C/C++

Dataflow Architectures





The GPU way: kernel-by-kernel
Bottlenecked by memory bandwidth
and host overhead



The Dataflow way: Spatial Eliminates memory traffic and overhead

Dataflow hardware architecture

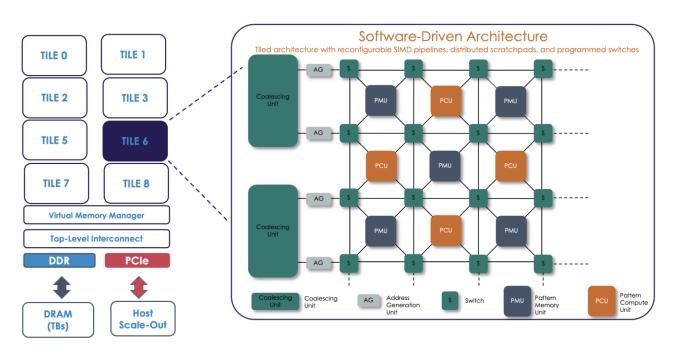


Image Courtesy: SambaNova

- Interleaving of compute and memory units
- Routing data through the compute elements

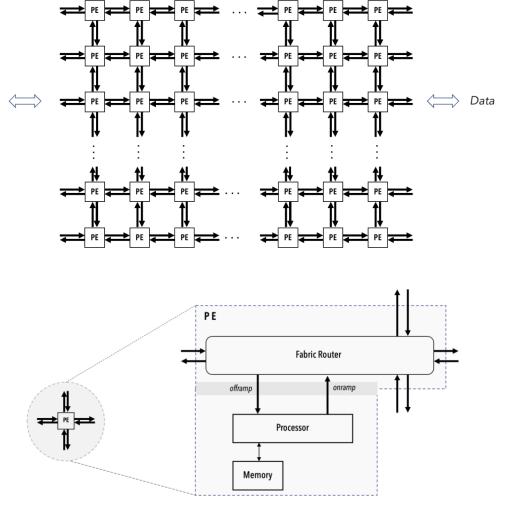
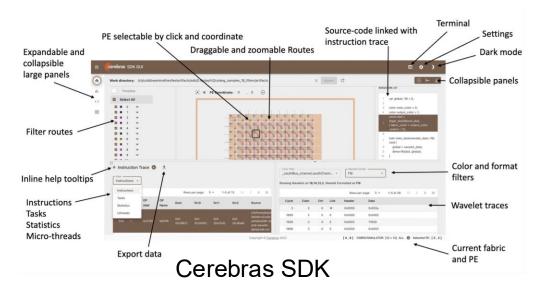
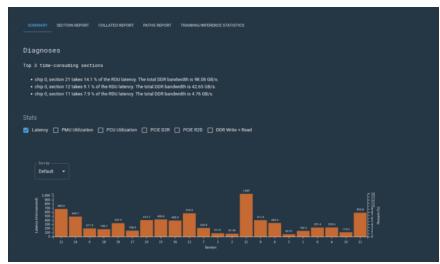


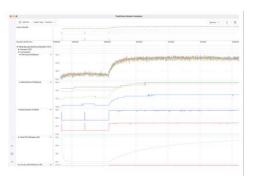
Image coutesy: Cerebras

Tools on Al Accelerators





SambaTune on SambaNova



GRAPH DATA

Plot graph data of any numerical data points from the host or IPU processor systems, such as board temperature, power consumption and IPU utilisation.

HOST EXECUTION ANALYSIS

Understand the execution of IPU-targeted software on your host system processors. Identify any bottlenecks between CPUs and IPUs across a visual interactive timeline.

REPORT COMPARISONS

Open two reports at once to compare their memory, execution, liveness and operations.

Visualise where efficiencies can be made with different model parameters.

IPU MEMORY ANALYSIS

Capture memory information from your ML models when executed on IPUs. Inspect variable placement, size and liveness throughout the execution.

PopVision on GraphCore

AI Testbed Community Engagement

- Al training workshops
 https://www.alcf.anl.gov/ai-testbed-training-workshops
- ATPESC Training
- Introduction to Al-driven Science on Supercomputers

Tutorial at SC24/ISC25 on Programming Novel Al accelerators for Scientific Computing *in collaboration* with Cerebras, Intel Habana, Graphcore, Groq and SambaNova

Upcoming Tutorial at SC25 St Louis, Missouri

Getting Started on ALCF AI Testbed Available for Allocations Cerebras CS-3, SambaNova Datascale SN30, GroqRack Graphcore Bow Pod64 Sambanova Inference – Metis SN40L Al Testbed User Guide

Director's Discretionary (DD) awards

- Scaling code
- Preparing for future computing competition
- Scientific computing in support of strategic partnerships.

Allocation Request Form

https://www.alcf.anl.gov/science/directors-discretionaryallocation-program

NAIRR Pilot

Aims to connect U.S. researchers and educators to computational, data, and training resources needed to advance AI research and research that employs AI.

https://nairrpilot.org/

Argonne Leadership Computing Facility

ALCF Resources

Science

>

>

>

Community and Partnerships

About

Support Center

https://docs.alcf.anl.gov/ai-testbed/getting-started/

ALCF AI Testbed

Home

Account and Project Management

ALCF User Guides

Data Management

Services

Running Jobs with PBS at the >

ALCF

Polaris Theta

ThetaGPU

Al Testbed

Getting Started

Cerebras
Graphcore
Groq

SambaNova

Data Management

Cooley

Aurora/Sunspot

Facility Policies

The ALCF AI Testbed houses some of the most advanced AI accelerators for scientific research.

The goal of the testbed is to enable explorations into next-generation machine learning applications and workloads, enabling the ALCF and its user community to help define the role of Al accelerators in scientific computing and how to best integrate such technologies with supercomputing resources.

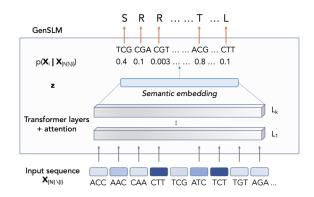
How to Get Access

Getting Started

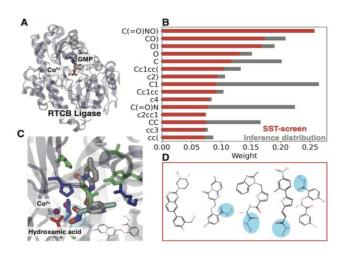
How to Contribute to Documentation

Al Based Models

Text Based Models

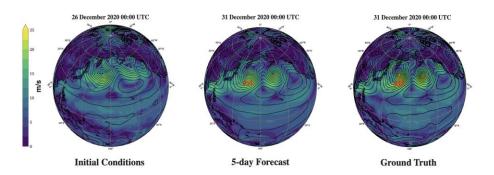


VOC detection

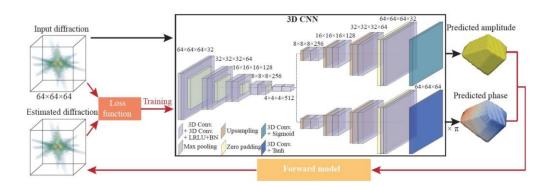


Drug and Molecular discovery

Vision Models



Stormer – Weather Forecasting



Diffraction Imaging Cosmology and more ..

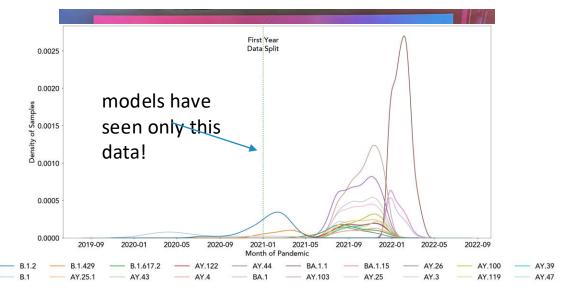
Genome-scale Language Models (GenSLMs)

Goal:

- How new and emergent variants of pandemic causing viruses, (specifically SARS-CoV-2) can be identified and classified.
- Identify mutations that are VOC (increased severity and transmissibility)
- Extendable to gene or protein synthesis.

Approach

- Adapt Large Language Models (LLMs) to learn the evolution.
- Pretrain 25M 25B models on raw nucleotides with large sequence lengths.
- Scale on GPUs, CS2s, SN30.



GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics

Winner of the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2022,

DOI: https://doi.org/10.1101/2022.10.10.511571

GenSLM 13B Training Performance

GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics Winner of the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2022

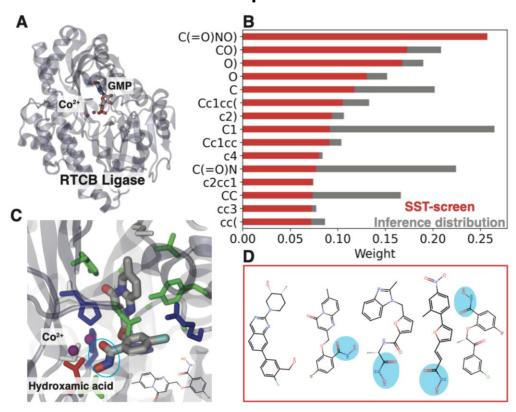
System	Number of Devices	Throughput (tokens/sec)	Improvement	Energy Efficiency
NVIDIA A100	8	1150	1.0	1.0
SambaNova SN30	8	9795	8.5	5.6
Cerebras CS-2	1	29061	25	6.5

Note: We are utilizing only 40% of the CS wafer-scale engine for this problem

[&]quot;Toward a Holistic Performance Evaluation of Large Language Models Across Diverse Al Accelerators", M.Emani et al., HCW workshop, IPDPS 2024

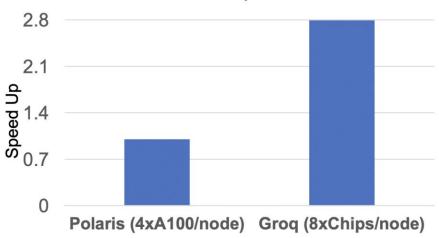
Accelerating Drug Design and Discovery with Machine Learning

Application code: Simple SMILES Transformer



High performance binding affinity prediction with a Transformer-based surrogate model

Archit Vasan*, Ozan Gokdemir*†, Alexander Brace*†, Arvind Ramanathan*†,
Thomas Brettin*, Rick Stevens*†, Venkatram Vishwanath*



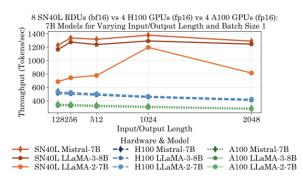
Courtesy: Archit Vasan

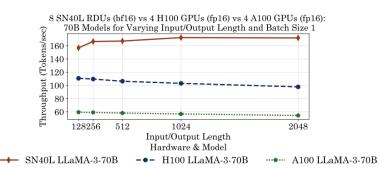
*Simplified Molecular Input Line Entry System (SMILES) - Representation for Molecules

Bert based encoder model to identify compounds with high binding affinity directly on the SMILES string input.

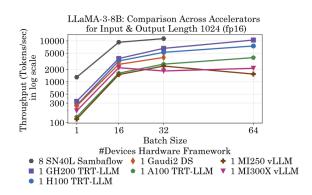
Inference Benchmarking

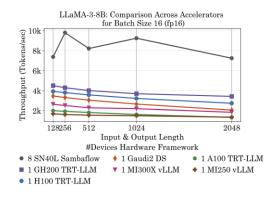
LLM-Inference-Bench: Inference Benchmarking of Large Language Models on AI Accelerators





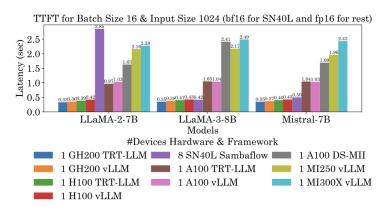
Throughput Comparison of 7B and 70B Llama Models on 8 SN40L RDUs with 4 H100s and 4 A100s GPU



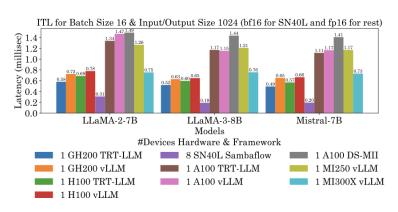


Throughput Vs I/O length

https://arxiv.org/abs/2411.00136

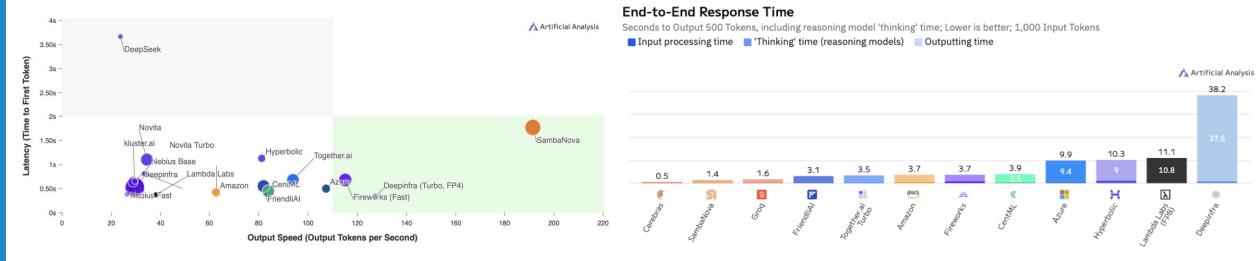


Time to first token (TTFT)

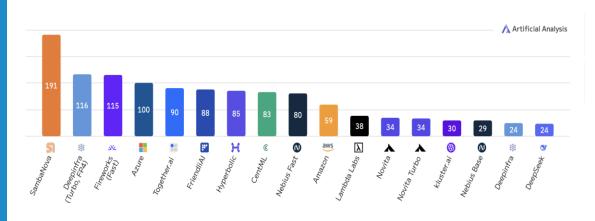


Inter Token Latency (ITL)

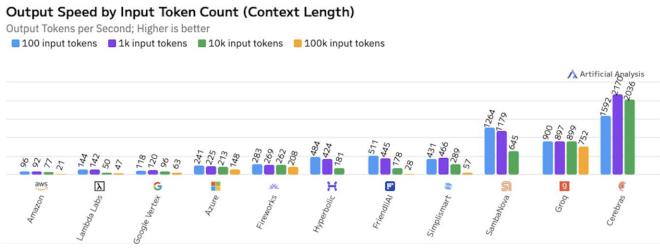
Inference Performance



Deepseek R1 latency (TTFT)

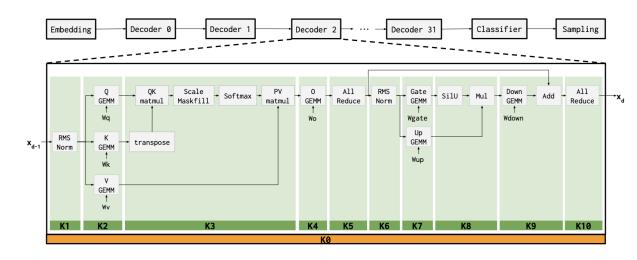


Response time for Ilama 3 70B



Deepseek R1 Output speed

Weather Forecasting

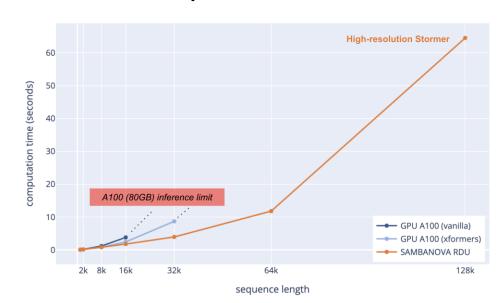


```
// DGX H100
                                                                                          // SN40L-8 + Kernel looping
                                                  // SN40L-8
// Kernel Call Schedule
                                                                                          // Kernel Call Schedule
                                                  // Kernel Call Schedule
x_{in} = embedding()
                                                  x_in = embedding()
                                                                                                 = embedding()
for decoder in range(0, 32):
                                                  for decoder in range(0, 32):
                                                                                                 = all_decoders_nosync(x_in)
  tmp_k1 = K1(x_in)
                                                                                          cls_out = classifier(x_in)
                                                    x_{out} = K0(x_{in})
                                                                                                 = sampling(cls_out)
  tmp_k2 = K2(tmp_k1)
                                                    x_in = x_out
  tmp_k3 = K3(tmp_k2.q, tmp_k2.k, tmp_k2.v)
  tmp_k4 = K4(tmp_k3)
                                                  cls_out = classifier(x_in)
  tmp_k5 = K5(tmp_k4)
                                                        = sampling(cls_out)
  tmp_k6 = K6(tmp_k5)
  tmp_k7 = K7(tmp_k6)
  tmp_k8 = K8(tmp_k7.gate, tmp_k7.up)
  tmp_k9 = K9(tmp_k5, tmp_k8)
  x_{out} = K10(tmp_k9)
        = x_out
cls_out = classifier(x_in)
        = sampling(cls_out)
```

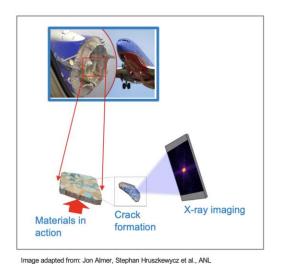
Goal: Achieve faster weather predictions at large scale rollouts 0.25° ERA5 data.

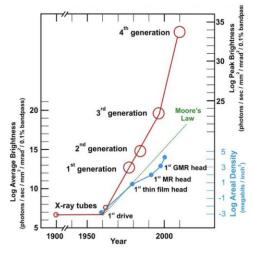
Approach: Sambanova's large memory capacity encourages training on high dimensional data (large context lengths).

Dataflow architecture with kernel looping reduces latency.

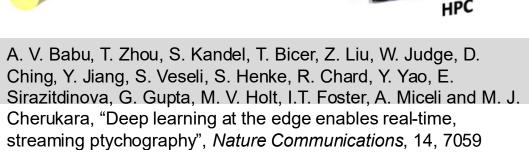


Diffraction Imaging





http://archive.synchrotron.or g.au/images/AOF2017/Bolar d---AOF---Future-lightsources-2017-05-29.pdf



Online Training

mage daupted norm born and, stephan adeatory at an, , and

- Real time feedback and reconstruction time in order of msec.
- APS-U will have 10-100x increase in data rates.
- Al-steered experiments to target 10¹² voxels.

Each technique presents a unique challenge

Today: ~GB (memory for phasing) 256-512 cubed arrays ~ 5 nm APS-U: ~TB 2560-5120 cubed 3D FFTs Or equivalent NN network ~ 5 A

Ptycho¹

- > GB/s data rates
- > PFLOPS of peak computing power to keep up

Live Stitched

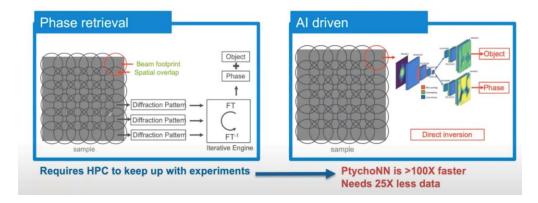
- Today: ~5 Ptycho beamlines
- APS-U: ~10 Ptycho beamlines

Accelerators for Imaging

- Larger compute fabric and memory footprint enables better throughput and large resolution imaging with almost double the power efficiency.
- Leveraged Sambanova SN30 hardware to bring up the BCDI AI workflow for native resolution upto 256³ voxels, avoiding the need for downsampling.
- Used Cerebras CS-2 for continual pre-training of PtychoNN model.
- Challenges: FFT and vision support, Compile times, Ease of portability.
- Focused efforts on developing AI methods and frameworks for large resolution APS-U data.

https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared

Spec	CS-3 / B200	CS-3 / DGX B200	CS-3 / NVL72
FP16 PFLOPs	28.4	3.5	0.3
Memory (GB)	6,250.0	781.3	88.9
NVLink Fabric Bandwidth (TB/s)	14,861	1,858	206
Power (Watts)	23.0	1.6	0.2
PFLOPs / W	1.2	2.2	1.8



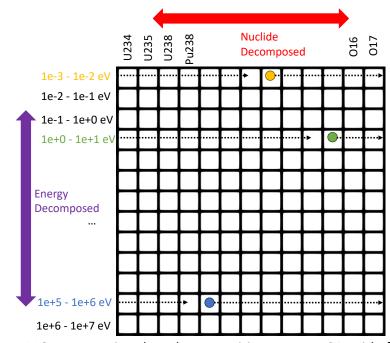
Monte Carlo with Single Cycle Latency: leveraging the cerebras cs-2 for acceleration of a latency-bound HPC simulation workload

Challenge: We examine the feasibility of performing continuous energy Monte Carlo (MC) particle transport on the Cerebras WSE-2 Al accelerator by porting XSBench to the Cerebras "CSL" programming model. The MC algorithm has traditionally been bandwidth/latency-bound, making the WSE-2's 40 GB of 1-cycle SRAM an attractive architecture. The critical challenge is to decompose data and tasks across the WSE-2's ~750,000 distributed memory processing elements (PEs), each having only 48 KB of memory.

Outcome:

- Developed several novel algorithms for decomposing data structures across the WSE-2's 2D network grid, for flowing particles (tasks) through the WSE-2, and for performing dynamic load balancing.
- Developed a method for exploiting the WSE-2's hardware random number generation capabilities to accelerate kernel by 65%.
- WSE-2 was found to run 130x faster than a highly optimized CUDA version of the kernel run on an NVIDIA A100 GPU.

Computational Physics Communications (https://doi.org/10.1016/j.cpc.2023.109072)



MC cross section data decomposition across a 2D grid of WSE-2 processing elements. This diagram shows the third phase of our algorithm where particles are exchanged in a round-robin manner to visit all nuclides in the row.

	Transistor Count [Trillion]	Peak Power [kW]	Monte Carlo XS Lookup FOM [Lookups/s]
A100 GPU	0.0542	0.4	6.43E+07
Cerebras CS-2	2.6	22.8	8.36E+09
Cerebras/A100	48	57	130

Observations, Challenges and Insights

- Significant speedup achieved for a wide-gamut of scientific ML applications
 - Easier to deal with larger resolution data and to scale to multi-chip systems
 - energy efficient
 - low latency critical applications
 - Off the shelf models for inference
- Room for improvement exists
 - Porting efforts and compilation times
 - Coverage of DL frameworks, support for performance analysis tools, debuggers
- Limited capability to support low-level HPC kernels
 - Work in progress to improve coverage

Thank You

- This research was funded in part and used resources of the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.
- Venkat Vishwanath, Murali Emani, Michael Papka, William Arnold, Sid Raskar, Krishna Teja-Chitty Venkata, Rajeev Thakur, Ray Powell, John Tramm, and many others have contributed to this material.
- Our current AI testbed system vendors Cerebras, Graphcore, Groq, Intel Habana and SambaNova. There are ongoing engagements with other vendors.

Hands On

https://github.com/argonne-lcf/ALCF Hands on HPC Workshop/tree/master/aiTestbeds

