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Integrating AI Systems in Facilities

AI-Accelerators

Experimental Facility

Supercomputers

Simulations

AI-Edge accelerator

SambaNova

Cerebras

Computing Facility

Data-driven Models
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ALCF AI Testbeds
• Infrastructure of next-

generation machines with 

hardware accelerators 

customized for artificial 

intelligence (AI) applications.

• Provide a platform to evaluate 

usability and performance of 

machine learning based HPC 

applications running on these 

accelerators.

• The goal is to better 

understand how to integrate AI 

accelerators with ALCF’s 

existing and upcoming 

supercomputers to accelerate 

science insights

Cerebras (CS-3) SambaNova SN30/SN40L

GraphcoreGroq Habana

https://www.alcf.anl.gov/alcf-ai-testbed

Tenstorrent



ALCF AI Testbed Systems are in production and available for allocations to the research community

ALCF AI Testbed

• Cerebras
• Sambanova SN30

Training

• SN40L – Metis
• Groq
• Cerebras

• Tenstorrent 

Inference

• Cerebras

• TenstorrentHPC

SN-30 8 nodes of 8 RDUs Cerebras CS-3 – 4 WSE

9 Groq nodes, 
8 GroqChip/node (TSPs)

2 nodes of 16 SL40L RDUs
Cerebras CS-3 – 4 WSE

Cerebras CSL

Cerebras CS-3 – 4 WSECerebras CS-3 – 4 WSE

32 Wormhole GU

32 Wormhole GU
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Coming Soon !!
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Cerebras 

CS3

SambaNova 

Cardinal SN30 / 

SN40L

Groq 

GroqRack

GraphCo

re GC200 

IPU

Habana

Gaudi1
NVIDIA A100

Compute 

Units
900,000 Cores 640/1040 PCUs

5120 vector 

ALUs
1472 IPUs

8 TPC + 

GEMM engine

6912 Cuda 

Cores

On-Chip 

Memory

44 GB SRAM, 

MemoryX

300/520MB Sram

0/64 GB HBM

1/1.5TB DDR

230MB L1 900MB L1
24 MB L1

32GB

192KB L1

40MB L2

40-80GB

Process 7nm 7nm 7 nm 7nm 16nm 7nm

System Size

4 Nodes 

Memory-X and 

Swarm-X

8 nodes (8 

cards per node)

9 nodes 

(8 cards per 

node)

4 nodes 

(16 cards 

per node)

2 nodes

(8 cards per 

node)

Several 

systems

Estimated 

Performance 

of a card 

(TFlops)

>5780 (FP16) >660/638 (BF16)
>250 (FP16)

>1000 (INT8)

>250 

(FP16)
>150 (FP16)

312 (FP16), 

156 (FP32)

Software 

Stack Support
Pytorch

SambaFlow, 

Pytorch

GroqAPI, 

ONNX

Tensorflow, 

Pytorch, 

PopArt

Synapse AI, 

TensorFlow 

and PyTorch

Tensorflow, 

Pytorch, etc

Interconnect Ethernet-based Ethernet-based RealScale 
TM

IPU Link
Ethernet-

based
NVLink
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HPC Software ecosystem on AI Accelerators
8

• Poplar C/C++ API

• BSP

• Habana TPC

• C/C++

• OpenMP Pragmas

• C/C++

• Redwood (C/C++)

• Cerebras Software Language

• Groq Runtime API

• C/C++
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The GPU way:  kernel-by-kernel
Bottlenecked by memory bandwidth 

and host overhead

The Dataflow way: Spatial
Eliminates memory traffic and overhead

Simple 

Convolution 
Graph

Dataflow Architectures

Image Courtesy: SambaNova 
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Dataflow hardware architecture

Image coutesy: Cerebras

• Interleaving of compute and memory units

• Routing data through the compute elements
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Tools on AI Accelerators 

SambaTune on SambaNova

PopVision on GraphCore

Cerebras SDK
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AI Testbed Community Engagement

• AI training workshops
https://www.alcf.anl.gov/ai-testbed-training-workshops

• ATPESC Training

• Introduction to AI-driven Science on Supercomputers

Tutorial at SC24/ISC25 on Programming Novel AI 
accelerators for Scientific Computing  in collaboration 
with Cerebras, Intel Habana, Graphcore, Groq and 
SambaNova

Upcoming Tutorial at SC25 St Louis, Missouri

https://www.alcf.anl.gov/ai-testbed-training-workshops
https://www.alcf.anl.gov/ai-testbed-training-workshops
https://www.alcf.anl.gov/ai-testbed-training-workshops
https://www.alcf.anl.gov/ai-testbed-training-workshops
https://www.alcf.anl.gov/ai-testbed-training-workshops
https://www.alcf.anl.gov/ai-testbed-training-workshops
https://www.alcf.anl.gov/ai-testbed-training-workshops
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Director’s Discretionary (DD) awards 

• Scaling code

• Preparing for future computing competition 

• Scientific computing in support of strategic 

partnerships.

Allocation Request Form
https://www.alcf.anl.gov/science/directors-discretionary-

allocation-program

AI Testbed User Guide

• Cerebras CS-3, 

• SambaNova Datascale SN30, 

• GroqRack

• Graphcore Bow Pod64 

• Sambanova Inference – Metis SN40L

NAIRR Pilot

Aims to connect U.S. researchers and educators 
to computational, data, and training resources 
needed to advance AI research and research 

that employs AI.

Available for Allocations

Getting Started on 
ALCF AI Testbed

https://nairrpilot.org/

https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program​
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program​
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program​
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program​
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program​
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program​
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program​
https://www.alcf.anl.gov/alcf-ai-testbed
https://www.alcf.anl.gov/alcf-ai-testbed
https://nairrpilot.org/​
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https://docs.alcf.anl.gov/ai-testbed/getting-started/



Argonne Leadership Computing Facility15

AI Based Models
Text Based Models Vision Models

VOC detection
Stormer – Weather Forecasting

Diffraction Imaging

Cosmology and more ..
Drug and Molecular discovery
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Genome-scale Language Models (GenSLMs)

     Goal:
• How new and emergent variants of pandemic causing 

viruses, (specifically SARS-CoV-2) can be identified 

and classified.

• Identify mutations that are VOC (increased severity 

and transmissibility)

• Extendable to gene or protein synthesis.

Approach
• Adapt Large Language Models (LLMs) to learn the 

evolution.

• Pretrain 25M – 25B models on raw nucleotides with 

large sequence lengths.

• Scale on GPUs, CS2s, SN30.

GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics 
Winner of the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2022,
DOI:  https://doi.org/10.1101/2022.10.10.511571

models have 
seen only this 
data!
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GenSLM 13B Training Performance

System
Number of 

Devices
Throughput 
(tokens/sec)

Improvement
Energy 

Efficiency

NVIDIA A100 8 1150 1.0 1.0

SambaNova SN30 8 9795 8.5 5.6

Cerebras CS-2 1 29061 25 6.5

Note: We are utilizing only 40% of the CS wafer-scale engine for this problem

GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics 
Winner of the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2022

"Toward a Holistic Performance Evaluation of Large Language Models Across Diverse AI Accelerators”, M.Emani et al., 
HCW workshop, IPDPS 2024
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Accelerating Drug Design and Discovery with Machine Learning

Application code: Simple SMILES Transformer 

Courtesy: Archit Vasan

*Simplified Molecular Input Line Entry System 
(SMILES) - Representation for Molecules

Bert based encoder model to identify compounds with 

high binding affinity directly on the SMILES string 

input.
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Inference Benchmarking 

https://arxiv.org/abs/2411.00136

Throughput Vs Batch Size Throughput Vs I/O length

Time to first token (TTFT)

Inter Token Latency (ITL)

Throughput Comparison of 7B and 70B Llama Models 

on 8 SN40L RDUs with 4 H100s and 4 A100s GPU

mailto:https://arxiv.org/abs/2411.00136
mailto:https://arxiv.org/abs/2411.00136
mailto:https://arxiv.org/abs/2411.00136
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Inference Performance

Deepseek R1 latency (TTFT) Response time for llama 3 70B

Output speed for llama 8b
Deepseek R1 Output speed
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Weather Forecasting
Goal: Achieve faster weather predictions at 

large scale rollouts 0.25° ERA5 data.

Approach: Sambanova's large memory 

capacity encourages training on high 

dimensional data (large context lengths).

Dataflow architecture with kernel looping 

reduces latency.
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A. V. Babu, T. Zhou, S. Kandel, T. Bicer, Z. Liu, W. Judge, D. 

Ching, Y. Jiang, S. Veseli, S. Henke, R. Chard, Y. Yao, E. 
Sirazitdinova, G. Gupta, M. V. Holt, I.T. Foster, A. Miceli and M. J. 
Cherukara, “Deep learning at the edge enables real-time, 

streaming ptychography”, Nature Communications, 14, 7059 
(2023). 

Diffraction Imaging

• Real time feedback and reconstruction time in 

order of msec. 

• APS-U will have 10-100x increase in 

data rates.

• AI-steered experiments to target 10^12 voxels.
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Accelerators for Imaging

• Larger compute fabric and memory footprint enables 
better throughput and large resolution imaging with 
almost double the power efficiency.

• Leveraged Sambanova SN30 hardware to bring up 
the BCDI AI workflow for native 
resolution upto 256^3 voxels, avoiding the need 
for downsampling.

• Used Cerebras CS-2 for continual pre-training 
of PtychoNN model.

• Challenges : FFT and vision support, Compile 
times, Ease of portability.

• Focused efforts on developing AI methods and 
frameworks for large resolution APS-U data.

https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared

https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
https://cerebras.ai/blog/cerebras-cs-3-vs-nvidia-b200-2024-ai-accelerators-compared
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Challenge: We examine the feasibility of performing continuous energy 
Monte Carlo (MC) particle transport on the Cerebras WSE-2 AI accelerator 
by porting XSBench to the Cerebras “CSL” programming model. The MC 
algorithm has traditionally been bandwidth/latency-bound, making the WSE-
2’s 40 GB of 1-cycle SRAM an attractive architecture. The critical challenge 
is to decompose data and tasks across the WSE-2’s ~750,000 distributed 
memory processing elements (PEs), each having only 48 KB of memory.

Monte Carlo with Single Cycle Latency: leveraging the 
cerebras cs-2 for acceleration of a latency-bound HPC simulation 
workload

MC cross section data decomposition across a 2D grid of 
WSE-2 processing elements. This diagram shows the third 
phase of our algorithm where particles are exchanged in a 

round-robin manner to visit all nuclides in the row.

Transistor

Count

[Trillion]

Peak

Power

[kW]

Monte Carlo

XS Lookup 

FOM

[Lookups/s]

A100 GPU 0.0542 0.4 6.43E+07

Cerebras CS-2 2.6 22.8 8.36E+09

Cerebras/A100 48 57 130

Outcome:
• Developed several novel algorithms for decomposing data 

structures across the WSE-2’s 2D network grid, for flowing particles 

(tasks) through the WSE-2, and for performing dynamic load 

balancing.

• Developed a method for exploiting the WSE-2’s hardware 

random number generation capabilities to accelerate kernel by 

65%. 

• WSE-2 was found to run 130x faster than a highly optimized 

CUDA version of the kernel run on an NVIDIA A100 GPU.

Computational Physics Communications 
(https://doi.org/10.1016/j.cpc.2023.109072)

Data courtesy: John Tramm (Argonne)

https://doi.org/10.1016/j.cpc.2023.109072
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Observations, Challenges and Insights

• Significant speedup achieved for a wide-gamut of scientific ML applications

 - Easier to deal with larger resolution data and to scale to multi-chip systems

- energy efficient 

- low latency critical applications

- Off the shelf models for inference

• Room for improvement exists

 - Porting efforts and compilation times 

 - Coverage of DL frameworks, support for performance analysis tools, debuggers

• Limited capability to support low-level HPC kernels 

• Work in progress to improve coverage
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Thank You

• This research was funded in part and used resources of the Argonne Leadership Computing 
Facility (ALCF), a DOE Office of Science User Facility supported under Contract DE-AC02-
06CH11357.

• Venkat Vishwanath, Murali Emani, Michael Papka, William Arnold, Sid Raskar, Krishna Teja-
Chitty Venkata, Rajeev Thakur, Ray Powell, John Tramm, and many others have contributed to 
this material. 

• Our current AI testbed system vendors – Cerebras, Graphcore, Groq, Intel Habana and 
SambaNova. There are ongoing engagements with other vendors.
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Hands On

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds
https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds
https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds
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