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System/Application Overview
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System overview

# nodes CPU per node GPU per node DRAM per 
node (GB)

NIC BW per 
node (GB/s)

Aurora 10,624 2 x Intel SPR 6 x Intel GPU Max 1550 1024 GB 200
Frontier 9,856 1 x AMD Milan 4 x AMD MI250x 512 GB 100
Polaris 560 1 x AMD Milan 4 x NVIDIA A100 512 GB 50

Overview of Aurora, Frontier, and Polaris

Aurora node 
      w/ Intel Max 1550 GPUs

Frontier node 
     w/ AMD MI-250X GPUs

Polaris node  
     w/ NVIDIA A100 GPUs
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GPU/Node specification for Aurora, Frontier, & Polaris
Aurora Frontier Polaris

GP
U

GPU Vendor Intel AMD NVIDIA
GPU model GPU Max 1550 (PVC) MI250x A100-SMX4
FP32 non-tensor peak (TF/s) 45.9 47.9 19.5
FP64 non-tensor peak /tensor peak (TF/s) 45.9 47.9 / 95.7 9.7 / 19.5
Stream triad (TB/s) 2 2.6 1.4
HBM capacity (GB) 128 128 40
TDP (W) 500 500 400

No
de

GPU cards per node 6 4 4
FP32 non-tensor peak (TF/s) 275.4 191.6 78
FP64 non-tensor peak/tensor peak (TF/s) 275.4 191.6 / 383.2 38.8 / 78
Stream triad (TB/s) 12 10.4 5.6
HBM capacity (GB) 768 512 160
NIC Bandwidth (GB/s) 200 100 50
Network fabric Slingshot-11 Slingshot-11 Slingshot-11
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Application overview
• Twelve HPC/ML applications to represent 

various science domains
⏤ CFD, electronic structure, material science, 

plasma kinetics, stellar explosion, particle 
transport

⏤ AI/ML GNN/ML, LLM/ML, Chemical ML

• Base languages
⏤ C++, Fortran, Python

• Programming model, or framework
⏤ OpenMP offload / OpenACC
⏤ Kokkos
⏤ OCCA
⏤ TAMM
⏤ AMReX
⏤ PyTorch
⏤ TensorFlow

Application Science Domain Base 
language

Programming Model 
or Portability Layer Scaling

AMR-Wind CFD C++ AMReX Weak

GAMESS Electronic Structure Fortran OpenMP Offload Strong

CNS-
libParanumal CFD C++ OCCA Weak

SimAI-Bench GNN/ML Python PyTorch Weak

CosmicTagger AI/ML Python PyTorch Weak

LAMMPS Chemistry/Material 
Science C++ Kokkos Weak

XGC Tokamak Plasma 
Kinetics C++ Kokkos Weak

NWChemEX Electronic Structure C++ TAMM(CUDA,HIP,SYCL) Strong

FlashX Stellar Explosion Fortran OpenMP/OpenACC W/S

Magatron-
DeepSpeed LLM/ML Python PyTorch Weak

Simple SMILE 
Transformer Chemical ML Python TensorFlow Weak

OpenMC Particle Transport C++ OpenMP Offload Weak
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Application Characteristics
Application Main 

precisions Algorithmic Motifs Performance Characteristics of 
Kernels

AMR-Wind FP64 Element-wise kernels, sparse iterative solvers Mem BW, network latency, GPU 
occupancy

GAMESS FP64 Eigen solve, linear algebra, tensor contractions Mem BW, compute, GPU occupancy

CNS-libParanumal FP64 Discontinuous Galerkin (DG) method, linear algebra, tensor contractions Mem BW (mostly), compute

SimAI-Bench FP32/TF32 SGEMM, layer normalization, ReLU activation Compute, mem BW, reduction

ComsmicTagger FP32/TF32 Batch normalization, ReLU activation, implicit GEMM convolution particle method Mem BW (mostly), compute

LAMMPS FP64 Particle method Compute (30%), mem BW (15%)

XGC FP64 Particle-mesh gather/scatter operation with unstructured mesh Comm, mem BW

NWChemEx FP64 Eigen solve, linear algebra, tensor contractions Mem BW, compute, GPU occupancy, 
somm

FlashX FP64 Finite volume and DG methods, linear algebra Mem BW (mostly)

Megatron-
DeepSpeed BF16 GEMM, Softmax/Swiglu activations, RMSNorm normalization Compute, mem BW, comm

SST FP64 Bidirectional self-attention, layer normalization, SeLU activation Mem BW, compute

OpenMC FP64 Particle method Mem latency, mem BW



Performance
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Single GPU Performance

• Performance on 1 A100 GPU, 2 GCDs of MI-250X GPU, and 2 stacks of Intel Max 1550 GPU
• MI-250X performs best with 5 applications (AMR-Wind, GAMESS, XGC, NWChemEX, FlashX)
• Intel Max 1550 GPU operates best with other five applications (CNS, SimAI, CosmicTagger, SST, and OpenMC)
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Single Node Performance

• Performance on 4 A100 GPUs on Polaris, 4 MI-250X GPUs on Frontier, 6 Intel Max 1550 GPUs on Aurora
• Since Aurora has 50% more GPU cards than others, an Aurora node performs best with ten applications (AMR-

Wind, GAMESS, CNS, SimAI, CosmicTagger, LAMMPS, XGC, NWChemEX, SST, and OpenMC)
• A Frontier node operates best with one application (i.e., Flash-X)
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Weak Scaling Performance and Parallel Efficiency
Scale-out with up to 5% of Aurora and Frontier (512 nodes) & 25% of Polaris (128 nodes)
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Weak Scaling Performance and Parallel Efficiency
Scale-out with up to 5% of Aurora and Frontier (512 nodes) & 25% of Polaris (128 nodes)
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Strong Scaling Performance and Parallel Efficiency
• Scale-out up to 5% of Aurora and Frontier (512 nodes) & 25% of Polaris (128 nodes)
• Two inputs: a small input for up to 8 nodes, and a large input for more nodes



Key Concepts for Performance
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CPU/GPU binding
• SLURM on Frontier: automatically binding cores, threads, and GPUs to nearest NUMA domain
• PBS-Pro on Aurora and Polaris: requiring manual binding of cores and threads with MPICH options, 

and manual GPU binding via ZE_AFFINITY_MASK (Aurora) / CUDA_VISIBLE_DEVICES (Polaris)
• Proper CPU to GPU binding on Aurora

⏤GAMESS: 2.5x speed-up
§ Half of the MPI ranks performs computations on GPUs and other half handle communication across nodes
§ Proper pairing of computing ranks and communication ranks

⏤NWChemEX: 2x speed-up
§ Mapping MPI processes exclusively to the cores of a single socket

⏤AMR-Wind: 8% speed-up
§ Less sensitive to CPU binding

• Proper GPU binding on Aurora
⏤AMR-Wind: 4.3x speed-up by assigning each MPI rank to GPU stack w/o oversubscription

• Proper core binding to oneCCL workers
⏤CosmicTagger: 10-15% speed-up by leaving separate CPU cores for oneCCL workers 
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GPU-aware MPI
• Removing the cost of staging GPU buffers via host memory

• Challenges
⏤ Improper initialization with GPU-aware MPI at large node counts with CNS-libParanumal on Polaris
⏤Memory issues with GPU-aware MPI (cray-mpich) with XGC on Polaris
⏤Memory leaks in Aurora MPICH with GPU-aware MPI on Aurora
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Configurations for ML applications
• Good representative of portable AI/ML applications using common 

framework libraries such as PyTorch and TensorFlow across a variety of 
hardware and accelerator platforms

• NCCL_NET_GDR_LEVEL=PHB on Frontier (512 node case) with 
CosmicTagger
⏤A long execution time for collective operations → exceeding timeout for 

PyTorch DDP for RCCL/NCCL backend
⏤Other suggestion by OLCF, setting it to SYS, and PXB → resulting in a 

dramatic loss of efficiency
⏤Still investigating the issue

• Explicit setting the number of NICs to RCCL collective library 
(NCCL_SOCKET_IFNAME) & enabling RCCL to leverage libfabric’s 
transport layer w/ ROCm AWS-OFI-RCCL plugin
⏤SimAI-Bench GNN: 39% performance gain at 2048 GPUs
⏤Cosmic Tagger: less sensitive to these parameters

SimAI-Bench GNN

Cosmic Tagger
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CCS mode on Aurora
• Intel’s Compute-Command Streamers (CCSs) to 

cluster Execution Unit (EU) , similar to the MPS 
mode on NVIDIA GPUs
⏤4, 2, or 1 (default) per stack using an 

environmental variable ZEX_NUMBER_OF CCS
⏤8, 4, or 2 clusters per PVC
⏤EUs are evenly distributed among CCSs

• Flash-X SSW test cases: Assigning each MPI 
rank to EU cluster
⏤A single node

§ 2.27x with 4 CCSs compared to 1 CCS
⏤8 nodes

§ Around 2 x speed up with 4 CCSs over 1 CCS 
with 8 nodes



Discussion & 
   Concluding Remarks
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Performance Portability
• A quantitative assessment of the performance portability as proposed by Pennycook of these 

applications across the three systems is very challenging.
⏤Requires an understanding of the efficiency of the implementation of each application on each of the systems
⏤Requires a detailed assessment of how the application is interacting with the system hardware
⏤Multiple kernels of each application with potentially different bounds, which makes analyzing each application’s 

efficiency in practice a complex task. 
⏤ Issues and limitations of the performance assessment tools (e.g., roofline analyses) on the three systems to 

quantify performance of applications

• Qualitative assessment of the performance portability 
⏤based on the double/single precision peaks, and stream bandwidth, and the observed performance of the 

applications 
§ GPU DP peaks w/o tensor cores: 2x on Aurora and Frontier over Polaris
§ GPU HBM BWs: 1.3x on Frontier over Aurora & 2x on Frontier over Polaris

⏤Amdahl’s law: for example, if runtime of DP peak bound kernels of an application is around 40%, the expected 
speed-up over Polaris is around 1.25x. 
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Performance Portability (Cont’d)
• Qualitative assessment of the performance portability 

⏤Six applications (i.e., GAMESS, SimAI-Bench, Cosmic Tagger, XGC, NWChemEx, and SST) had FOMs on 
Aurora and Frontier which are both >= 1.25x that on Polaris

§ GAMESS, SimAI-Bench: Frontier and Aurora FOMs are within 10% of each other (qualitatively 
performance portable)

§ CosmicTagger, SST: higher FOMs on Aurora (38% and 65% difference from the Frontier FOMs)

§ NWChemEx, XGC: higher FOMS on Frontier (32% and 20% different respectively)

⏤None of the applications were far out of bounds expected (highest 4x, lowest 0.8x)

⏤Most of them have some level of performance portability

⏤No programming models or algorithmic motifs achieving more performance portable than others.
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Concluding Remarks
• All twelve applications evaluated in this study are all portable across the three systems and three 

different GPU architectures.
⏤all complex scientific applications that simulate a wide range of different physics & employ a variety of different 

computational algorithms
⏤Three different base languages (i.e., C++, Fortran, Python) and different portability layers (e.g., OpenMP, 

OCCA, Kokkos, AMReX, PyTorch, TensorFlow)

• Single GPU/Node Performance: 
⏤0.9-4x on PVC (0.8-2.4x on MI-250x) over A100
⏤1.3-6.3x on an Aurora node (0.8-2.6x on a Frontier node) over a Polaris node

• Scaling Performance: 
⏤All application scaled reasonably well across three systems
⏤Weak scaling parallel efficiencies were similar across systems
⏤Strong scaling parallel efficiencies on Aurora & Frontier were slightly worse due to more compute resources per 

node there
⏤Better chance to run larger problems efficiently on Aurora & Frontier than on Polaris
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Concluding Remarks (Cont’d)
• Key issues and concepts encountered were discussed

• Qualitative performance portability was discussed. 

• Future work
⏤Better understanding of performance portability of applications across today’s large scale GPU systems
⏤ Improving techniques and tools for measuring application performance bottleneck to quantify application 

efficiency
⏤ Impact of I/O on application performance 
⏤ Investigating the impact of unique hardware such as the HBM memory on SPR CPUs on Aurora for mixed 

workloads utilizing CPU and GPU resources in a combined fashion
⏤ Investigating the power usage of applications on different systems in the future
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Thank you


