
AI and HPC Applications on Leadership Computing
Platforms: Performance and Scalability Studies

JaeHyuk Kwack*, Colleen Bertoni, Umesh Unnikrishnan, Riccardo Balin, Khalid Hossain,
Yasaman Ghadar, Timothy J. Williams, Abhishek Bagusetty, Mathialakan

Thavappiragasam, Väinö Hatanpää, Archit Vasan, John Tramm, Scott Parker

Leadership Computing Facility (LCF), Computational Science (CPS)
Argonne National Laboratory

Lemont, IL, USA

ALCF Hands-on HPC workshop
October 7th, 2025

System/Application Overview

Argonne Leadership Computing Facility3

System overview

nodes CPU per node GPU per node DRAM per
node (GB)

NIC BW per
node (GB/s)

Aurora 10,624 2 x Intel SPR 6 x Intel GPU Max 1550 1024 GB 200
Frontier 9,856 1 x AMD Milan 4 x AMD MI250x 512 GB 100
Polaris 560 1 x AMD Milan 4 x NVIDIA A100 512 GB 50

Overview of Aurora, Frontier, and Polaris

Aurora node
 w/ Intel Max 1550 GPUs

Frontier node
 w/ AMD MI-250X GPUs

Polaris node
 w/ NVIDIA A100 GPUs

Argonne Leadership Computing Facility4

GPU/Node specification for Aurora, Frontier, & Polaris
Aurora Frontier Polaris

GP
U

GPU Vendor Intel AMD NVIDIA
GPU model GPU Max 1550 (PVC) MI250x A100-SMX4
FP32 non-tensor peak (TF/s) 45.9 47.9 19.5
FP64 non-tensor peak /tensor peak (TF/s) 45.9 47.9 / 95.7 9.7 / 19.5
Stream triad (TB/s) 2 2.6 1.4
HBM capacity (GB) 128 128 40
TDP (W) 500 500 400

No
de

GPU cards per node 6 4 4
FP32 non-tensor peak (TF/s) 275.4 191.6 78
FP64 non-tensor peak/tensor peak (TF/s) 275.4 191.6 / 383.2 38.8 / 78
Stream triad (TB/s) 12 10.4 5.6
HBM capacity (GB) 768 512 160
NIC Bandwidth (GB/s) 200 100 50
Network fabric Slingshot-11 Slingshot-11 Slingshot-11

Argonne Leadership Computing Facility5

Application overview
• Twelve HPC/ML applications to represent

various science domains
⏤ CFD, electronic structure, material science,

plasma kinetics, stellar explosion, particle
transport

⏤ AI/ML GNN/ML, LLM/ML, Chemical ML

• Base languages
⏤ C++, Fortran, Python

• Programming model, or framework
⏤ OpenMP offload / OpenACC
⏤ Kokkos
⏤ OCCA
⏤ TAMM
⏤ AMReX
⏤ PyTorch
⏤ TensorFlow

Application Science Domain Base
language

Programming Model
or Portability Layer Scaling

AMR-Wind CFD C++ AMReX Weak

GAMESS Electronic Structure Fortran OpenMP Offload Strong

CNS-
libParanumal CFD C++ OCCA Weak

SimAI-Bench GNN/ML Python PyTorch Weak

CosmicTagger AI/ML Python PyTorch Weak

LAMMPS Chemistry/Material
Science C++ Kokkos Weak

XGC Tokamak Plasma
Kinetics C++ Kokkos Weak

NWChemEX Electronic Structure C++ TAMM(CUDA,HIP,SYCL) Strong

FlashX Stellar Explosion Fortran OpenMP/OpenACC W/S

Magatron-
DeepSpeed LLM/ML Python PyTorch Weak

Simple SMILE
Transformer Chemical ML Python TensorFlow Weak

OpenMC Particle Transport C++ OpenMP Offload Weak

Argonne Leadership Computing Facility6

Application Characteristics
Application Main

precisions Algorithmic Motifs Performance Characteristics of
Kernels

AMR-Wind FP64 Element-wise kernels, sparse iterative solvers Mem BW, network latency, GPU
occupancy

GAMESS FP64 Eigen solve, linear algebra, tensor contractions Mem BW, compute, GPU occupancy

CNS-libParanumal FP64 Discontinuous Galerkin (DG) method, linear algebra, tensor contractions Mem BW (mostly), compute

SimAI-Bench FP32/TF32 SGEMM, layer normalization, ReLU activation Compute, mem BW, reduction

ComsmicTagger FP32/TF32 Batch normalization, ReLU activation, implicit GEMM convolution particle method Mem BW (mostly), compute

LAMMPS FP64 Particle method Compute (30%), mem BW (15%)

XGC FP64 Particle-mesh gather/scatter operation with unstructured mesh Comm, mem BW

NWChemEx FP64 Eigen solve, linear algebra, tensor contractions Mem BW, compute, GPU occupancy,
somm

FlashX FP64 Finite volume and DG methods, linear algebra Mem BW (mostly)

Megatron-
DeepSpeed BF16 GEMM, Softmax/Swiglu activations, RMSNorm normalization Compute, mem BW, comm

SST FP64 Bidirectional self-attention, layer normalization, SeLU activation Mem BW, compute

OpenMC FP64 Particle method Mem latency, mem BW

Performance

Argonne Leadership Computing Facility8

Single GPU Performance

• Performance on 1 A100 GPU, 2 GCDs of MI-250X GPU, and 2 stacks of Intel Max 1550 GPU
• MI-250X performs best with 5 applications (AMR-Wind, GAMESS, XGC, NWChemEX, FlashX)
• Intel Max 1550 GPU operates best with other five applications (CNS, SimAI, CosmicTagger, SST, and OpenMC)

Argonne Leadership Computing Facility9

Single Node Performance

• Performance on 4 A100 GPUs on Polaris, 4 MI-250X GPUs on Frontier, 6 Intel Max 1550 GPUs on Aurora
• Since Aurora has 50% more GPU cards than others, an Aurora node performs best with ten applications (AMR-

Wind, GAMESS, CNS, SimAI, CosmicTagger, LAMMPS, XGC, NWChemEX, SST, and OpenMC)
• A Frontier node operates best with one application (i.e., Flash-X)

Argonne Leadership Computing Facility10

Weak Scaling Performance and Parallel Efficiency
Scale-out with up to 5% of Aurora and Frontier (512 nodes) & 25% of Polaris (128 nodes)

Argonne Leadership Computing Facility11

Weak Scaling Performance and Parallel Efficiency
Scale-out with up to 5% of Aurora and Frontier (512 nodes) & 25% of Polaris (128 nodes)

Argonne Leadership Computing Facility12

Strong Scaling Performance and Parallel Efficiency
• Scale-out up to 5% of Aurora and Frontier (512 nodes) & 25% of Polaris (128 nodes)
• Two inputs: a small input for up to 8 nodes, and a large input for more nodes

Key Concepts for Performance

Argonne Leadership Computing Facility14

CPU/GPU binding
• SLURM on Frontier: automatically binding cores, threads, and GPUs to nearest NUMA domain
• PBS-Pro on Aurora and Polaris: requiring manual binding of cores and threads with MPICH options,

and manual GPU binding via ZE_AFFINITY_MASK (Aurora) / CUDA_VISIBLE_DEVICES (Polaris)
• Proper CPU to GPU binding on Aurora

⏤GAMESS: 2.5x speed-up
§ Half of the MPI ranks performs computations on GPUs and other half handle communication across nodes
§ Proper pairing of computing ranks and communication ranks

⏤NWChemEX: 2x speed-up
§ Mapping MPI processes exclusively to the cores of a single socket

⏤AMR-Wind: 8% speed-up
§ Less sensitive to CPU binding

• Proper GPU binding on Aurora
⏤AMR-Wind: 4.3x speed-up by assigning each MPI rank to GPU stack w/o oversubscription

• Proper core binding to oneCCL workers
⏤CosmicTagger: 10-15% speed-up by leaving separate CPU cores for oneCCL workers

Argonne Leadership Computing Facility15

GPU-aware MPI
• Removing the cost of staging GPU buffers via host memory

• Challenges
⏤ Improper initialization with GPU-aware MPI at large node counts with CNS-libParanumal on Polaris
⏤Memory issues with GPU-aware MPI (cray-mpich) with XGC on Polaris
⏤Memory leaks in Aurora MPICH with GPU-aware MPI on Aurora

Argonne Leadership Computing Facility16

Configurations for ML applications
• Good representative of portable AI/ML applications using common

framework libraries such as PyTorch and TensorFlow across a variety of
hardware and accelerator platforms

• NCCL_NET_GDR_LEVEL=PHB on Frontier (512 node case) with
CosmicTagger
⏤A long execution time for collective operations → exceeding timeout for

PyTorch DDP for RCCL/NCCL backend
⏤Other suggestion by OLCF, setting it to SYS, and PXB → resulting in a

dramatic loss of efficiency
⏤Still investigating the issue

• Explicit setting the number of NICs to RCCL collective library
(NCCL_SOCKET_IFNAME) & enabling RCCL to leverage libfabric’s
transport layer w/ ROCm AWS-OFI-RCCL plugin
⏤SimAI-Bench GNN: 39% performance gain at 2048 GPUs
⏤Cosmic Tagger: less sensitive to these parameters

SimAI-Bench GNN

Cosmic Tagger

Argonne Leadership Computing Facility17

CCS mode on Aurora
• Intel’s Compute-Command Streamers (CCSs) to

cluster Execution Unit (EU) , similar to the MPS
mode on NVIDIA GPUs
⏤4, 2, or 1 (default) per stack using an

environmental variable ZEX_NUMBER_OF CCS
⏤8, 4, or 2 clusters per PVC
⏤EUs are evenly distributed among CCSs

• Flash-X SSW test cases: Assigning each MPI
rank to EU cluster
⏤A single node

§ 2.27x with 4 CCSs compared to 1 CCS
⏤8 nodes

§ Around 2 x speed up with 4 CCSs over 1 CCS
with 8 nodes

Discussion &
 Concluding Remarks

Argonne Leadership Computing Facility19

Performance Portability
• A quantitative assessment of the performance portability as proposed by Pennycook of these

applications across the three systems is very challenging.
⏤Requires an understanding of the efficiency of the implementation of each application on each of the systems
⏤Requires a detailed assessment of how the application is interacting with the system hardware
⏤Multiple kernels of each application with potentially different bounds, which makes analyzing each application’s

efficiency in practice a complex task.
⏤ Issues and limitations of the performance assessment tools (e.g., roofline analyses) on the three systems to

quantify performance of applications

• Qualitative assessment of the performance portability
⏤based on the double/single precision peaks, and stream bandwidth, and the observed performance of the

applications
§ GPU DP peaks w/o tensor cores: 2x on Aurora and Frontier over Polaris
§ GPU HBM BWs: 1.3x on Frontier over Aurora & 2x on Frontier over Polaris

⏤Amdahl’s law: for example, if runtime of DP peak bound kernels of an application is around 40%, the expected
speed-up over Polaris is around 1.25x.

Argonne Leadership Computing Facility20

Performance Portability (Cont’d)
• Qualitative assessment of the performance portability

⏤Six applications (i.e., GAMESS, SimAI-Bench, Cosmic Tagger, XGC, NWChemEx, and SST) had FOMs on
Aurora and Frontier which are both >= 1.25x that on Polaris

§ GAMESS, SimAI-Bench: Frontier and Aurora FOMs are within 10% of each other (qualitatively
performance portable)

§ CosmicTagger, SST: higher FOMs on Aurora (38% and 65% difference from the Frontier FOMs)

§ NWChemEx, XGC: higher FOMS on Frontier (32% and 20% different respectively)

⏤None of the applications were far out of bounds expected (highest 4x, lowest 0.8x)

⏤Most of them have some level of performance portability

⏤No programming models or algorithmic motifs achieving more performance portable than others.

Argonne Leadership Computing Facility21

Concluding Remarks
• All twelve applications evaluated in this study are all portable across the three systems and three

different GPU architectures.
⏤all complex scientific applications that simulate a wide range of different physics & employ a variety of different

computational algorithms
⏤Three different base languages (i.e., C++, Fortran, Python) and different portability layers (e.g., OpenMP,

OCCA, Kokkos, AMReX, PyTorch, TensorFlow)

• Single GPU/Node Performance:
⏤0.9-4x on PVC (0.8-2.4x on MI-250x) over A100
⏤1.3-6.3x on an Aurora node (0.8-2.6x on a Frontier node) over a Polaris node

• Scaling Performance:
⏤All application scaled reasonably well across three systems
⏤Weak scaling parallel efficiencies were similar across systems
⏤Strong scaling parallel efficiencies on Aurora & Frontier were slightly worse due to more compute resources per

node there
⏤Better chance to run larger problems efficiently on Aurora & Frontier than on Polaris

Argonne Leadership Computing Facility22

Concluding Remarks (Cont’d)
• Key issues and concepts encountered were discussed

• Qualitative performance portability was discussed.

• Future work
⏤Better understanding of performance portability of applications across today’s large scale GPU systems
⏤ Improving techniques and tools for measuring application performance bottleneck to quantify application

efficiency
⏤ Impact of I/O on application performance
⏤ Investigating the impact of unique hardware such as the HBM memory on SPR CPUs on Aurora for mixed

workloads utilizing CPU and GPU resources in a combined fashion
⏤ Investigating the power usage of applications on different systems in the future

Argonne Leadership Computing Facility23

Acknowledgment
• This work was supported by the Argonne Leadership Computing Facility, which is a DOE Office of

Science User Facility supported under Contract DE-AC02-06CH11357, and by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations (Office of
Science and the National Nuclear Security Administration).

• This work was done on a pre-production supercomputer with early versions of the Aurora software
development kit.

• This research also used resources of the Oak Ridge Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Contract DE- AC05-00OR22725.

• We wish to extend our special thanks to PMA (Programming Models and Architectures) WG members
(Thomas Applencourt, Longfei Gao, Kevin Harms, Brian Homerding, Chris Knight, Ye Luo, Vitali
Morozov, Steve Rangel, Kris Rowe, and Brice Videau) who are not authors of this paper but have
generously provided technical feedback on a regular basis.

• We also appreciate support from Austin Harris at ORNL.

Argonne Leadership Computing Facility24

Thank you

