
Kaushik Velusamy

DAOS - Advanced

Object

Object Interface

3

• No object create/destroy
• No size, permission/ACLs or attributes
• Sharded and erasure-coded/replicated
• Algorithmic object placement
• Very short Time To First Byte (TTFB)

e.g. POSIX Dataset

root

dir dir

file file file file

Mapping

128-bit
 object Identifier

Object

DAOS Container

obj

obj obj

obj obj obj obj

Middleware/Framework View DAOS Layout View

Array

key

val

key

val

key

val

@

@

@

Kev-value Store

Multi-level
Key-value Store

key3

val

key2

val []

key3

val

@

@

@
key2key1 key1 key3

key2key1

Object
• Array or key-value store

• O(1T) objects in a container

• e.g. files and directories in a POSIX container

POSIX Container

root

dir dir

file file file file

Python Container

obj obj obj obj

obj obj obj obj

obj obj obj obj

KV Container

valuekey

valuekey

valuekey

valuekey valuekey

valuekey

valuekey

Retrieving information about your POSIX container (single process)

$ daos fs scan HPE_test new_cont

DFS scanner: Start (2025-05-10-13:59:22)

DFS scanner: Scanned 7236 files/directories (runtime: 30 sec)

DFS scanner: Scanned 14315 files/directories (runtime: 60 sec)

DFS scanner: Done! (runtime: 87 sec)

DFS scanner: 21461 scanned objects

DFS scanner: 19201 files

DFS scanner: 101 symlinks

DFS scanner: 2159 directories

DFS scanner: 15 max tree depth

DFS scanner: 809438484 bytes of total data

DFS scanner: 42156 bytes per file on average

DFS scanner: 170912509 bytes is largest file size

DFS scanner: 665 entries in the largest director

Where is my object?

Retrieving information about an object (advanced)

$ daos fs get-attr -H /daos/src $DAOS_POOL $DAOS_CONT

OID = 2533280060991858.0

Object Class = RP_3G1

Directory Creation Object Class = RP_3G1

File Creation Object Class = EC_16P2GX

File Creation Chunk Size = 4194304

$ daos obj query -i 2533280060991858.0 $DAOS_POOL $DAOS_CONT

oid: 2533280060991858.0 ver 0 grp_nr: 1

grp: 0

replica 0 204:10

replica 1 209:9

replica 2 56:5

7

Object Stores

• Object Stores can unlock previously expensive I/O patterns

• Supports different creation, querying, analysis, and use patterns

• Data retrieval leverages metadata - Build structure on the fly

• Weather/climate - Simulation (data generation) only one part

Consumption workloads different layout/pattern from production.

• Radio astronomy- Data collected and stored by antenna
(frequency and location) and capture time. Reconstruction of

images done in time order.

• Evaluation of transients or other phenomenon undertaken

across frequency and location.

8

• Efficient for unstructured data
• Efficient for accessing small data.
• High bandwidth, low latency, and IOPS
• No read-modify-write on I/O path (use versioning)
• No locking
• No client tracking or client recovery
• No centralized (meta)data server
• No global object table

DAOS Ecosystem and Design Fundamentals

Replication duplicates entire data copies for simplicity and fast reads but is storage-inefficient

Erasure coding splits data into fragments with parity for high storage efficiency and greater fault
tolerance against multiple failures, though it introduces performance overhead and complexity.

Erasure coding is better for large, infrequently accessed data.

Replication suits latency-sensitive, small-file workloads.

Storage efficiency and greater fault tolerance against multiple failures

• How it works:
• Stores multiple, identical full copies of the same data across

different locations.
• Benefits:
• Simplicity: Easy to implement and manage.
• Fast Reads: Direct access to full copies allows for rapid data

retrieval.
• Lower CPU Load: Less computationally intensive than

erasure coding.
• Disadvantages:
• High Storage Overhead: Requires substantially more storage

space (e.g., triple for three copies).
• Slower Writes: Write performance can be impacted by the

need to update all copies simultaneously.
• Best For:
• Latency-sensitive applications, small files, and workloads

where read performance is critical and storage cost is less of
a constraint.

Replication

• How it works:
• Breaks data into smaller pieces and adds parity information,

storing these fragments across multiple nodes or locations.
• Benefits:
• Storage Efficiency: Significantly less storage space is required

compared to replication for the same level of protection.
• Higher Fault Tolerance: Can tolerate more simultaneous

component failures than replication (e.g., losing multiple drives
or nodes).

• Greater Flexibility: Offers more flexible and dynamic data
protection configurations.

• Disadvantages:
• Performance Overhead: Encoding and decoding data introduce

computational overhead, which can slow down performance.
• Complexity: More complex to implement and manage due to the

algorithms involved.
• Less Ideal for Small Files: Not suitable for very small objects

(under 200 KB) due to fragmentation overhead.
• Best For:
• Large-scale, cold storage, long-term archival, and scenarios

where high durability, scalability, and storage efficiency are
prioritized over read speed.

Erasure Coding

Erasure Coding and Replication

Redundancy

What is a fault domain?
• Unit of failure: ssd, engine, server, rack, etc.
• On aurora the FD is set to the daos server node (2 engines, 32 targets/SSDs).
• Properties are set on container creation (most properties are immutable):

Container Properties (Redundancy)
Object class controls redundancy and striping/sharding of the object (file, directory).

daos cont create –-properties=rd_fac:2
• Redundancy factor property describes the number of concurrent fault domains (servers) that
containers are protected against.
• Redundancy factor of 0 is mostly used to measure system performance, but not for production workloads

• Data in container is non redundant; if a DAOS engines goes down, data loss / corruption will be observed
by the user

• Automatic online self-healing

• Storage nodes monitor each other (SWIM protocol)

• “Rebuild” is triggered to restore data redundancy/protection on surviving nodes when a node
fails

• The rebuild process is done online and should complete quickly

• Failed storage node to be reintegrated by administrator once issue is fixed

• Checking rebuild status

$ daos pool query HPE_test

Pool 7d5b9907-1b31-4b65-b308-03947b0cbbc7, ntarget=4096, disabled=112, leader=21, version=634,

state=Degraded

Pool health info:

- Rebuild busy, 45 objs, 412318398 recs

Pool space info:

- Target(VOS) count:3984

- Storage tier 0 (SCM):

Total size: 146 GB

Free: 144 GB, min:36 MB, max:36 MB, mean:36 MB

- Storage tier 1 (NVMe):

Total size: 4.7 TB

Free: 4.6 TB, min:1.1 GB, max:1.1 GB, mean:1.1 GB

DAOS Fault Handling

Objects can be created with different redundancy types and levels:
• No redundancy (non-production)
• Replication (good for metadata / small objects)
• Erasure Coding (good for files / large objects)

$ daos cont query HPE_test test_cont

Container UUID : e1870f74-609f-4ea0-9852-ef4a3de7b5af

Container Label : test_cont

Container Type : POSIX

Pool UUID : 7d5b9907-1b31-4b65-b308-03947b0cbbc7

Container redundancy factor : 2

Number of open handles : 1

Latest open time Latest close/modify time : 0x1e7ed8192c200000

(2025-05-09 13:50:54.426841088 +0000 UTC)

: 0x1e7ed8193a240003 (2025-05-09 13:50:54.441537536 +0000 UTC)

Number of snapshots : 0

Object Class : UNKNOWN

Dir Object Class : RP_3G1

File Object Class : EC_16P2GX

Chunk Size : 4.0 MiB

daos container create

 –type=POSIX ${DAOS_POOL_NAME} ${DAOS_CONT_NAME}

 --chunk-size=2097152

 --file-oclass=EC_16P2G32

 --dir_oclass=RP3G1

 --properties=rd_fac:2,ec_cell_sz:131072,cksum:crc32,srv_cksum:on

 daos fs set-attr --path=/mnt/dfuse/d1 --oclass=EC_16P1G32

–In this case, d1 must exist in the daos container mount at the dfuse mountpoint, and anything
created under d1 will now have object class of EC_16P1G32.

• Part of MPI Standard

• Collective IO optimizations:

• Aggregation of small IO across all your processes

• Collective File Create/Open (if file system supports it)

• Supports multitude of access patterns

• Derived MPI datatype and File Views

• Building block for parallel IO libraries

• HDF5, PnetCDF , etc.

• Chances are if you are doing parallel IO on Aurora, your App has an MPIIO backend

MPI-I/O

• MPICH includes a DAOS ROMIO driver to avoid going through the kernel
• dfuse is still required to be mounted to access files through a path and query the pool and container
information from that path.
• MPIIO uses a POSIX container, so the same advice applies in this case.
• Other libraries build on top of MPICH (HDF5, PnetCDF, ADIOS, etc.)
• Using those libraries also follow the same advise.

MPIIO recommendations:
• The DAOS adio driver is optimized for Single Shared File access (i.e. when the file is not opened with
MPI_COMM_SELF).
 Collective file open shares the underlying DAOS pool and container handles (expensive operations).
 As long the file is open collectively, IO access whether independent or collective is OK.
 Avoid File Per Process access with the driver. If not possible, set it to use the UFS driver instead: export

ROMIO_FSTYPE_FORCE=ufs and use the Interception library.
• Enable ROMIO collective buffering when doing collective IO especially when using access patterns that are
extremely non-contiguous in the file (thousands of small bytes offsets).

• Support torch.save and torch.load function
• checkpoints directly to/from DAOS container
• could be same or different container than the one used
for data loading
• pydoas.torch.Checkpoint class
• manages the DAOS connections
• provides reader and writer methods.Self-contained modules integrated with PyTorch
• • pydaos.torch modules
• • Link directly with libdfs (no need to dfuse or pil4dfs)
• • Highly parallel and use multiple network contexts / event queues

Support for both:
• Map-style dataset
–torch.utils.data.Dataset
–implement
__len__/__getitem__/__getitems__()
–requires files scanning which is done in parallel thanks to dfs parallel dir scanning capability
• Iterable datasets
–torch.utils.data.IterableDataset
iter__() over samples

• PyTorch multi-processing supported
• Provide worker_init() method
• Share pool/container handle across all the workers

PyTorch - PyDAOS

Kaushik Velusamy

Monitoring DAOS

export D_IL_REPORT=1

mpiexec --env LD_PRELOAD=/usr/lib64/libpil4dfs.so

 -np ${NRANKS}..

Monitoring with DAOS interception library report

export D_LOG_FILE="${PBS_O_WORKDIR}/${PBS_JOBID}-${NNODES}/daos_d_log_file.log"

export D_LOG_MASK=info

export D_LOG_FILE_APPEND_PID=1
export D_LOG_STDERR_IN_LOG=1

Monitoring with DAOS DEBUG LOGs Client

Monitoring with DAOS DEBUG LOGs Server

* Server logs can be collected on need basis.

• Darshan, a scalable HPC I/O characterization tool.
• Designed to capture an accurate picture of application I/O behavior.
• Properties such as patterns of access within files.
• Investigate and tune the I/O behavior of complex HPC applications.
• Minimum overhead lightweight design
• Can help uncover critical insights into applications’ usage of this novel storage technology.

A shared library your application preloads at runtime, which generates a binary file at program
termination, and a suite of utilities to analyze this file.

https://github.com/darshan-hpc/darshan

S. Snyder, P. Carns, K. Harms, R. Ross, G. K. Lockwood and N. J. Wright, "Modular HPC I/O Characterization with Darshan," 2016 5th Workshop on Extreme-Scale Programming Tools (ESPT),
Salt Lake City, UT, USA, 2016, pp. 9-17, doi: 10.1109/ESPT.2016.006

Monitoring with Darshan instrumentation

https://github.com/darshan-hpc/darshan
https://github.com/darshan-hpc/darshan
https://github.com/darshan-hpc/darshan

• Users have multiple options for accessing DAOS storage, each with varying performance,
ease of adoption, etc.

➢ No app modifications required
➢ Performance limited by FUSE architecture, single process, etc.
➢ Darshan support:
■ Instrumentation via Darshan’s POSIX module
■ No insight into DAOS usage by FUSE daemon

Darshan + Legacy Posix access Via Fuse

➢ No app modifications required
➢ Performance improved by bypassing FUSE for some
or all I/O operations
➢ Darshan support:
■ POSIX, DFS, and DAOS level instrumentation

Darshan + Legacy POSIX access via FUSE + interception libs

Darshan + Direct access to DFS (file) and DAOS (object) APIs

➢ App or middleware modifications required

➢ Direct usage of DAOS APIs provides most control

over performance, redundancy, etc.

➢ Darshan support:

 ■ Full instrumentation of DFS and DAOS APIs

module use /soft/modulefiles

module load daos

git clone https://github.com/darshan-hpc/darshan.git

./prepare.sh

./configure --enable-daos-mod \

 --enable-hdf5-mod --with-hdf5= /opt/aurora/24.347.0/spack/unified/0.9.0/install/linux-sles15-x86_64/oneapi-2025.0.5/hdf5-1.14.5-drswwe2

 --enable-pnetcdf-mod --with-pnetcdf=/opt/aurora/24.347.0/spack/unified/0.9.0/install/linux-sles15-x86_64/oneapi-2025.0.5/parallel-
netcdf-1.12.3-jy2mhag \

 --with-log-path=/lus/flare/projects/Aurora_deployment/pkcoff/darshanlog \

 --with-jobid-env=PBS_JOBID \

 --prefix=/lus/flare/projects/Aurora_deployment/pkcoff/lib/darshan \

 'CFLAGS=-O2 -g -Wall' CC=mpicc

make install

/lus/flare/projects/datascience/kaushik/daos/darshan/darshan-daos/install-daos-darshan/bin/darshan-config --log-path

/lus/flare/projects/datascience/kaushik/daos/darshan/darshan-daos/install-daos-darshan/bin/darshan-mk-log.pl

(should only need to do this one time) that script just sets up that year/month/day hierarchy within the log dir

This is where your final darshan logs would go

Then to save to a specific file location: export DARSHAN_LOGFILE=<fullpathtodarshanlogfile>

To test if darshan is working

• LD_PRELOAD=/path/to/libdarshan.so DARSHAN_ENABLE_NONMPI=1 cat /some/file

• LD_PRELOAD=/path/to/libdarshan.so mpiexec ...

To install your own setup of darshan profiler – on Aurora

brew update

brew install --cask anaconda # restart terminal

conda create --name env-mac-darshan --clone base

conda activate env-mac-darshan

git clone https://github.com/daos-stack/daos.git

cd darshan

git submodule update --init

./prepare

cd darshan-util

../configure --disable-darshan-runtime --prefix=/Users/kvelusamy/Desktop/projects/tools/darshan-util-install \

 --enable-apmpi-mod --enable-apxc-mod CFLAGS='-g -O0 -Wall’

make & make install

cd pydarshan

pip install .

export LD_LIBRARY_PATH=/Users/kvelusamy/Desktop/projects/tools/darshan-util-install/lib/:$LD_LIBRARY_PATH

export PATH=/Users/kvelusamy/Desktop/projects/tools/darshan-util-install/:$PATH

export DYLD_FALLBACK_LIBRARY_PATH=/Users/kvelusamy/Desktop/projects/tools/darshan-util-install/lib/

$ LD_PRELOAD=/Users/kvelusamy/Desktop/projects/tools/darshan-util-install/lib/libdarshan-util.a

 python -m darshan summary ~/Desktop/pyDAOS/kaushikv_ior_id4576025-45130_5-1-80140-6343233643831684606_1.darshan

ls ~/Desktop/pyDAOS/kaushikv_ior_id4576025-45130_5-1-80140-6343233643831684606_1.html

To install pydarshan on Macbook
Python utilities to interact with Darshan log records

module use /soft/perftools/darshan/darshan-3.4.7/share/craype-2.x/modulefiles

module load darshan

LD_PRELOAD=/soft/perftools/darshan/darshan-3.4.7/lib/libdarshan.so:

 /opt/aurora/24.347.0/spack/unified/0.9.2/install/linux-sles15-

x86_64/oneapi-2025.0.5/hdf5-1.14.5-zrlo32i/lib/libhdf5.so:

 /opt/aurora/24.347.0/spack/unified/0.9.2/install/linux-sles15-

x86_64/oneapi-2025.0.5/parallel-netcdf-1.12.3-cszcp66/lib/libpnetcdf.so:

 /usr/lib64/libpil4dfs.so

If your application is using gpu_tile_compact.sh then this whole LD_PRELOAD will go in your personal copy of
the bash script via export.

Darshan module on aurora and LD_PRELOAD ORDER

1

2

3
4

Demo

mpiexec ${EXT_ENV1} –np 24 -ppn 12 --cpu-bind list:4:9:14:19:20:25:30:35:56:61:66:71:72:77:82:87 --no-vni –genvall \
../ior_mdtest_install_bin/bin/ior -a POSIX -i 1 -b 10m -t 1m -D 100 -k -w -r -C -e -v -o /tmp/datascience/1_fSX_dS1_rd_fac_0/ior_file_1.dat

install-daos-darshan/bin/darshan-parser

 kaushikv_ior_id4576025-45130_5-1-80140-
6343233643831684606_1.darshan

With Darshan-Parser

mpiexec ${EXT_ENV1} –np 24 -ppn 12 --cpu-bind list:4:9:14:19:20:25:30:35:56:61:66:71:72:77:82:87 --no-vni –genvall \
../ior_mdtest_install_bin/bin/ior -a POSIX -i 1 -b 10m -t 1m -D 100 -k -w -r -C -e -v -o /tmp/datascience/1_fSX_dS1_rd_fac_0/ior_file_1.dat

Heat Maps

mpiexec ${EXT_ENV1} –np 24 -ppn 12 --cpu-bind list:4:9:14:19:20:25:30:35:56:61:66:71:72:77:82:87 --no-vni –genvall \
../ior_mdtest_install_bin/bin/ior -a POSIX -i 1 -b 10m -t 1m -D 100 -k -w -r -C -e -v -o /tmp/datascience/1_fSX_dS1_rd_fac_0/ior_file_1.dat

Per Module Statistics

mpiexec ${EXT_ENV1} –np 24 -ppn 12 --cpu-bind list:4:9:14:19:20:25:30:35:56:61:66:71:72:77:82:87 --no-vni –genvall \
../ior_mdtest_install_bin/bin/ior -a POSIX -i 1 -b 10m -t 1m -D 100 -k -w -r -C -e -v -o /tmp/datascience/1_fSX_dS1_rd_fac_0/ior_file_1.dat

• POSIX • DFS

Operation Counts

• STDIO

• POSIX • DFS

Access Sizes

• POSIX

• DFS

Common Access Sizes

© 2025 Hewlett Packard Enterprise Development LP

Thank You

	Slide 1: DAOS - Advanced
	Slide 2: Object
	Slide 3: Object Interface
	Slide 4
	Slide 5
	Slide 6: Where is my object?
	Slide 7: Object Stores
	Slide 8: DAOS Ecosystem and Design Fundamentals
	Slide 9: Storage efficiency and greater fault tolerance against multiple failures
	Slide 10
	Slide 11: Erasure Coding and Replication
	Slide 12: Redundancy
	Slide 13: DAOS Fault Handling
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: MPI-I/O
	Slide 22
	Slide 23
	Slide 24
	Slide 25: PyTorch - PyDAOS
	Slide 26
	Slide 27: Monitoring DAOS
	Slide 28: Monitoring with DAOS interception library report
	Slide 29: Monitoring with DAOS DEBUG LOGs Client
	Slide 30: Monitoring with DAOS DEBUG LOGs Server
	Slide 31: Monitoring with Darshan instrumentation
	Slide 32: Darshan + Legacy Posix access Via Fuse
	Slide 33: Darshan + Legacy POSIX access via FUSE + interception libs
	Slide 34: Darshan + Direct access to DFS (file) and DAOS (object) APIs
	Slide 35: To install your own setup of darshan profiler – on Aurora
	Slide 36: To install pydarshan on Macbook Python utilities to interact with Darshan log records
	Slide 37
	Slide 38: Darshan module on aurora and LD_PRELOAD ORDER
	Slide 39: Demo
	Slide 40: With Darshan-Parser
	Slide 41
	Slide 42: Heat Maps
	Slide 43: Per Module Statistics
	Slide 44: Operation Counts
	Slide 45: Access Sizes
	Slide 46: Common Access Sizes
	Slide 47: Thank You

