
October 7-9, 2025



I/O libraries for Parallel Perf
Part 1: MPI-IO

Using and tuning MPI-IO and HDF5

Rob Latham (robl@mcs.anl.gov) 
Math and Computer Science
Argonne National Laboratory

mailto:robl@mcs.anl.gov


Argonne Leadership Computing Facility3

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

MPI-IO

• I/O interface specification for use in MPI apps

• Data model is same as POSIX: stream of bytes in a file

• Like classic POSIX in some ways…

• Open()  → MPI_File_open()

• Pwrite() → MPI_File_write()

• Close() → MPI_File_close()

• Features many improvements over POSIX:

• Collective I/O

• Noncontiguous I/O with MPI datatypes and file views

• Nonblocking I/O

• Fortran bindings (and additional languages)

• Implementations available on most (all?) platforms

3

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility4

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

“Hello World” MPI-IO style: contiguous

/* an "Info object":  these store key-value strings for tuning the

     * underlying MPI-IO implementation */

    MPI_Info_create(&info);

    snprintf(buf, BUFSIZE, "Hello from rank %d of %d\n", rank, nprocs);

    len = strlen(buf);

    /* We're working with strings here but this approach works well

     * whenever amounts of data vary from process to process. */

    MPI_Exscan(&len, &offset, 1, MPI_OFFSET, MPI_SUM, MPI_COMM_WORLD);

    MPI_CHECK(MPI_File_open(MPI_COMM_WORLD, argv[1],

                MPI_MODE_CREATE|MPI_MODE_WRONLY, info, &fh));

    /* _all means collective.  Even if we had no data to write, we would

     * still have to make this call.  In exchange for this coordination,

     * the underlyng library might be able to greatly optimize the I/O */

    MPI_CHECK(MPI_File_write_at_all(fh, offset, buf, len, MPI_CHAR,

                &status));

    MPI_CHECK(MPI_File_close(&fh));

Hello from… Hello from…

Rank 0:

24 bytes at 0

Rank 1:

24 bytes at 24

…

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility5

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

“Hello World” MPI-IO style: non-contiguous in memory

MPI_Datatype memtype;

    MPI_Count memtype_size;

    …

    /* sample string:

     * Hello from rank 8 of 16

     * ------        ----------

     *

     * the '-' indicates which elements an indexed type with

     *  lengths 6 and 10  at displacemnts 0 and 

     * "10 from end of string" would select: */
    int lengths[2] = {6, 10};
    int displacements[2] = {0, len-10};
    MPI_Type_indexed(2, lengths, displacements, MPI_CHAR, &memtype);
    MPI_Type_commit(&memtype);
    MPI_Type_size_x(memtype, &memtype_size);
…
    MPI_CHECK(MPI_File_write_at_all(fh, offset, buf, 1, memtype,
                &status));

Hello k 0 of 16 Hello k 1 of 16

Rank 0:

6+10 bytes at 0

Rank 1:

6+10 bytes at 16

…

Hello from rank 1 of 16

‘lengths” and “displacements”: each 

rank sends first six and last ten 

characters to file

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility6

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

“Hello World” MPI-IO style: non-contiguous in file

/* noncontiguous in file requres a "file view*/

    MPI_Datatype viewtype;

    int *displacements;

    displacements = malloc(len*sizeof(*displacements));

    /* each process will write to its own "view" of the file: 

     * Rank 0:

     * H e l l o   f r o m  ...

     * Rank 1:

     *  H e l l o  f r o m ...

     */

    for (int i=0; i< len; i++)

        displacements[i] = rank+(i*nprocs);

    MPI_Type_create_indexed_block(len, 1, displacements, MPI_CHAR, &viewtype);

    MPI_Type_commit(&viewtype);

    free(displacements);

    MPI_CHECK(MPI_File_open(MPI_COMM_WORLD, argv[1],

                MPI_MODE_CREATE|MPI_MODE_WRONLY, info, &fh));

    MPI_CHECK(MPI_File_set_view(fh, 0, MPI_CHAR, viewtype, "native", info));

    MPI_CHECK(MPI_File_write_at_all(fh, offset, buf, len, MPI_CHAR,

                &status));

H H e l le l l

Hello from rank 0 of 16 Hello from rank 1 of 16

o o

While this access describes lots of small 

regions, the library sees it as one single 

access and can optimize.

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility7

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

RUNNING

• Submit to the  ‘alcf_training’ queue and use the ‘alcf_training’ project (aurora)

• I’ve provided a ‘hello-aurora.sh’ shell script

• qsub -A alcf_training -q alcf_training ./hello-aurora.sh

• We’ll use the DAOS file system

• ALCF has made a “alcf_training” pool on the “daos_user” service

• Job script will create your own container inside that pool

• daos container create --type POSIX $DAOS_POOL $DAOS_CONT

• DAOS is always running, but we have to “launch” the legacy file system view of it

• launch-dfuse_perf.sh ${DAOS_POOL}:${DAOS_CONT}

• Now shell tools can operate on /tmp/${DAOS_POOL}/${DAOS_CONT}

• There’s a special “cpu binding” to place processes such that they use all 8 Aurora network cards. 

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility8

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Output on Aurora

==== contiguous in memory and file
cat /tmp/ATPESC2025_0/robl-hello/hello.out
Hello from rank 0 of 16
Hello from rank 1 of 16
…
Hello from rank 15 of 16

==== noncontiguous in memory
cat /tmp/ATPESC2025_0/robl-hello/hello-
noncontig.out
Hello k 0 of 16
Hello k 1 of 16
…
Hello  15 of 16

Output of our hello programs

==== noncontiguous in file
cat /tmp/ATPESC2025_0/robl-hello/hello-
view.out
HHHHHHHHHHHHHHHHeeeeeeeeeeeeeeeelllllll
llllllllllllllllllllllllloooooooooooooo
oo                
ffffffffffffffffrrrrrrrrrrrrrrrrooooooo
ooooooooommmmmmmmmmmmmmmm                
rrrrrrrrrrrrrrrraaaaaaaaaaaaaaaannnnnnn
nnnnnnnnnkkkkkkkkkkkkkkkk                                          
1111110123456789012345                
ooooooooooooooooffffffffffffffff                                
11111111111111116666666666666666

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility9

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Under the hood: DAOS (essentially)

…

DAOS servers

DAOS POOL

DAOS Container

container1

container2

robl-hello

daos pool list-containers alcf_training

daos container list-objects alcf_training robl-hello

2814754062073856.0

2814754062073857.0

939571296501401038.192

939571297230848002.128

939571296817209422.64

Data objects 

POSIX Container objects DKEYS:

Hello-io -> inodeX

hello-noncontig -> inodeY

Hello-view -> inodeZ

…

inodeX

- Mode

- Object id

- Uid

- Gid

- Mtime

- …

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility10

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Key takeaways

• Simple example but still captures important concepts

• Info objects:  tuning parameters: 

•  enable/disable optimizations

• Adjust buffer sizes

• Select alternate strategies

• Data placement in file specified by user

• “shared file pointer” possible but not optimized

• Collective vs independent I/O

• Error checking!!!

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility11

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

The IOR benchmark

• MPI application benchmark

• reads and writes data in configurable ways

• I/O pattern can be interleaved or random

• Input:

• transfer size, block size, segment count

• interleaved or random

• Output: Bandwidth and IOPS

• Configurable backends

• POSIX, STDIO, MPI-IO

• HDF5, PnetCDF, S3, rados

https://github.com/hpc/ior 

P
o

s
itio

n
 in

 file

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://github.com/hpc/ior


Argonne Leadership Computing Facility12

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Hands-on: IOR and stripe size

• For a fixed number of nodes, MPI 
processes, block size, and transfer 
size…

• Vary the stripe count

• IOR environment variables

• MPICH config file

$stripe=1

 rm  -f ${OUTPUT}/ior-stripe-$stripe.out

 export IOR_HINT__MPI__striping_factor=$stripe

   # -a MPIIO: using MPI-IO so we can pass the "striping_factor" hint

   # -e      : fsync after each write phase: push out dirty data to storage

   # -C      : reorder ranks: read from a different rank than the one that wrote

   # -s      : segments: each client will write to eight regions

   # -i      : repeat experiment five times: lots of variability in I/O

   # -t      : transfer size: how big each request will be

   # -b      : block size:  how big each region will be in the file (needs to 

                     be a multiple of transfer size).

 mpiexec -n ${NTOTRANKS} --ppn ${NRANKS_PER_NODE} \

        ior --mpiio.showHints -a MPIIO \

 -e -C -s 8 -i 5 \

 -t 1MiB -b 64MiB -o ${OUTPUT}/ior-stripe-$stripe.out

00000 11111 22222 NNNN…

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility13

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Contention in benchmarkig

Installed Acceptance

 testing
Early

 Access
Production Retirement

C
o
n
te

n
ti
o
n

Ideal: 100% of 

storage 

available for 

benchmarking
Reality: have to 

share with 

everyone else

Machine 

less busy 

now, but 

no longer 

interesting 

– boo!

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility14

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Hands on: IOR and stripe count

• Default stripe size is 1

▪ Why?  Most files small: optimizing for common case

• “All the servers” doesn’t seem to hurt performance here

▪ lfs setstripe -1 /path/to/file

• Could go further with “overstriping”

▪ Didn’t work on Polaris: investigating

• “Where’s my bandwidth?”

▪ 128 nodes (network links) here

▪ Shared file (so I can experiment with stripe count) means 
lustre locking overhead/coordination

▪ Graph at right from February 2023 – any changes 
today?

visualization_io/mpiio-hdf5/io-sleuthing/examples/striping

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility15

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Graphic from J. Tannahill, LLNL

Typical simulations divide up the region being 
simulated into chunks, then group those 
chunks into similar amounts of work.

These regions are then 
distributed to cores 
(columns) on nodes 
(grey boxes) for 
computation.

When speed of 
writing is the priority, 
blobs of data are 
written from each 
node into individual 
files that must then 
be post-processed 
for analysis.

To prepare data for 
analysis, a code 
can write in a 
canonical view by 
processing the 
data while it is in 
memory, resulting 
in a better 
organized dataset.

or

Decomposition

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility16

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Contiguous and Noncontiguous I/O

• Contiguous I/O moves data from a single memory block into a 
single file region

• Noncontiguous I/O has three forms:

• Noncontiguous in memory

• Noncontiguous in file

• Noncontiguous in both

• Structured data leads naturally to noncontiguous I/O (e.g., 
block decomposition)

• Describing noncontiguous accesses with a single operation 
passes more knowledge to I/O system

16

Process 0 Process 0

Noncontiguous

in File

Noncontiguous

in Memory

Ghost cell

Stored element

…
Vars 0, 1, 2, 3, … 23

Extracting variables from a block 

and skipping ghost cells will 

result in noncontiguous I/O

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility17

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

I/O Transformations

Software between the application and the PFS performs transformations, primarily to improve performance

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2
When we think about I/O 
transformations, we consider 
the mapping of data between 
application processes and 
locations in file

◼Goals of transformations:
– Reduce number of I/O operations to PFS 

(avoid latency, improve bandwidth)
– Avoid lock contention (eliminate serialization)
– Hide huge number of clients from PFS 

servers

◼ “Transparent” transformations don’t 
change the final file layout
– File system is still aware of the actual data 

organization
– File can be later manipulated using serial 

POSIX I/O

17

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility18

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Request Size and I/O Rate

Tests run on 128 nodes, 16 process per node (2048 processes total) 

 of HPE/Cray/Intel Auroa at Argonne, writing to DAOS

18

Sawtooth due to 

“power of 10” vs 

“power of 2” 

differences 

Small I/O 

transfers 

dominated by 

network 

performance/

overhead In general, 

larger 

requests 

better.

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility19

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Reducing Number, Increasing Size of Operations

• Because most operations go over the network, I/O to a PFS incurs more latency than with a 
local FS

• Data sieving is a technique to address I/O latency by combining operations:

• When reading, application process reads a large region holding all needed data and pulls out what is 
needed

• When writing, three steps required (below)

Step 1: Data in region to be 

modified are read into 

intermediate buffer (1 read).

Step 2: Elements to be 

written to file are replaced 

in intermediate buffer.

Step 3: Entire region is 

written back to storage with 

a single write operation.

19

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility20

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Noncontig with IOR

• IOR can describe access with an MPI datatype

• --mpiio.useStridedDatatype –b … -s …

• (buggy in recent versions: use 4.0rc1 or newer)

20

blocksize segment count: 4

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility21

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Darshan: Characterizing Application I/O

Strategy: observe I/O behavior 
at the application and library 
level

• What did the application intend to do?

• How much time did it take to do it?

• What can be done to tune and improve?21

Application

Application I/O access

Runtime libraries

File system access

File system

Block access

Storage devices

Simplified HPC I/O stack

How is an application using the I/O system?

How successful is it at attaining high performance?

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility22

How does Darshan work?

22

• Darshan records file access statistics 
independently on each process

• At app shutdown, collect, aggregate, 
compress, and write log data

• After job completes, analyze Darshan log data 
• darshan-parser - provides complete text-format 

dump of all counters in a log file
• PyDarshan - Python analysis module for Darshan 

logs, including a summary tool for creating HTML 
reports 

• Originally designed for MPI applications, but in recent Darshan versions (3.2+) any 
dynamically-linked executable can be instrumented
➢ In MPI mode, a log is generated for each app
➢ In non-MPI mode, a log is generated for each process

➢ More information:  https://docs.alcf.anl.gov/theta/performance-tools/darshan/ or 
Shane’s (concurrent) session

https://docs.alcf.anl.gov/theta/performance-tools/darshan/
https://docs.alcf.anl.gov/theta/performance-tools/darshan/
https://docs.alcf.anl.gov/theta/performance-tools/darshan/


Argonne Leadership Computing Facility23

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Data Sieving in Practice

Naiive Data Sieving

MPI-IO writes 960 960

MPI-IO Reads 0 0

Posix Writes 4 800 000 4 800 000

Posix Reads 0 4 800 784

MPI-IO bytes written 8.9 GiB 8.9 GiB

MPI-IO bytes read 0 0

Posix bytes read 0 2334 GiB

Posix bytes written 8.9 GiB 2343 GiB

Runtime (sec) 68.8 404.2

Not always a win, particularly for writing:

• IOR benchmark, fixed file size, increasing segments
• Enabling data sieving instead made writes slower: why?

• Locking to prevent false sharing (not needed for reads)
• Multiple processes per node writing simultaneously
• Internal ROMIO buffer too small, resulting in write 

amplification [1]

[1]

Selected Darshan statistics for 5000 segments

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility24

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Data Sieving: time line

Top: MPI I/O call 
describing 
noncontiguous 
regions

Independent: no 
coordination 
possible.  Each 
process does its 
own data 
sieving. Gaps 

between 
operations 
show lock 
acquisition.  

One MPI I/O 
call (top) turns 
into many 
POSIX 
operations 
(below)

https://github.com/hpc-io/dxt-explorer Interactive log analysis tool by Jean Luca Bez

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://github.com/hpc-io/dxt-explorer
https://github.com/hpc-io/dxt-explorer
https://github.com/hpc-io/dxt-explorer
https://github.com/hpc-io/dxt-explorer
https://github.com/hpc-io/dxt-explorer


Argonne Leadership Computing Facility25

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Avoiding Lock Contention

• To avoid lock contention when writing to a shared file, we can reorganize data between 
processes

• Two-phase I/O splits I/O into a data reorganization phase and an interaction with the storage system 
(two-phase write depicted):

• Data exchanged between processes to match file layout

• 0th phase determines exchange schedule (not shown)

Phase 1: Data are exchanged between 

processes based on organization of data 

in file.

Phase 2: Data are written to file (storage 

servers) with large writes, no contention.

25

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility26

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Two-Phase I/O Algorithms

For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective I/O 

Based on Underlying Parallel File System Locking Protocols,” SC2008, November 2008.

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility27

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Naiive Data Sieving Two-phase

MPI-IO writes 960 960 960

MPI-IO Reads 0 0 0

Posix Writes 4 800 000 4 800 000 9156

Posix Reads 0 4 800 784 0

MPI-IO bytes written 8.9 GiB 8.9 GiB 8.9 GiB

MPI-IO bytes read 0 0 0

Posix bytes read 0 2334 GiB 0

Posix bytes written 8.9 GiB 2343 GiB 8.9 GiB

Runtime (sec) 68.8 404.2 1.56

Two-phase I/O in Practice
• Consistent performance independent of access pattern

• Note re-scaled y axis [1]
• No write amplification, no read-modify-write
• Some network communication but networks are fast
• Requires “temporal locality” -- not great if writes “skewed”, imbalanced, or some process enter collective late. 

[2]

[1]

Selected Darshan statistics, 5000 segments

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility28

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

More investigation: Darshan heatmaps (Polaris, Lustre)

Data sieving Data sieving disabled Collective buffering

M
P

I-
IO

P
O

S
IX

Effect of ROMIO optimizations on IOR benchmark: 5000 non-contiguous segments, three iterations.  Note the x axis

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility29

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Two-

phase

Tuned 

Two-

phase

List-IO

MPI-IO writes 1152 1152 1152

MPI-IO Reads 0 0 0

DAOS Writes 696 768 1152

DAOS Reads 0 0 0

MPI-IO bytes written 10.7 GiB 10.7 GiB 10.7 GiB

MPI-IO bytes read 0 0 0

DAOS bytes read 0 0 0

DAOS bytes written 10.7 GiB 10.7 GiB 10.7 GiB

Max MPI-IO write time 1.335 sec 0.35 sec 0.22 sec

Max DAOS write time 3.10 

msec

3.485 

msec

0.22 sec

DAOS: Collective I/O vs scatter-gather I/O
• Same IOR experiment but on Aurora this time

• 2 nodes, 96 processes per node
• List-IO lets us avoid two sources of overhead

• “rounds” of I/O – no buffering at intermediate aggregator
• No network exchange of data

• tuned: – asking for more aggregators per node lets us use all 8 
network cards

• Since List-IO does not aggregate, could be a problem at larger 
scale (evaluation “on my list”)

• Obviously, combining both approaches would be great 
(that’s “on my list” now too…)

Selected Darshan statistics, 5000 segments

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility30

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Tuning MPI-IO: info objects

• You will likely never need these, but can help in specific situations:

• Both keys and values are strings

• Applicable to all ROMIO-based MPI-IO libraries 

Hint Default Value effect

cb_buffer_size 16777216 An internal buffer for “two phase i/o”.  

Bigger value takes away application 

memory, but results in fewer rounds of 

I/O

romio_cb_read

romio_cb_write

Enable (on cray)

automatic (ROMIO)

Turn on/off collective i/o:  code will fall 

through to independent case

romio_no_indep_rw

cb_config_list

True

“*:*” (on Cray) or “*:1” elsewhere

“deferred open” – only i/o aggregators 

open the file.  Open time not usually 

dominant factor unless total I/O 

moved per file fairly small

Cb_config_list Default is “*:1” but should be “*:8” or 

higher

Aurora has eight network cards and 

needs 8 or more processes to obtain 

highest bandwidth

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility31

Tuning MPI-IO: cray-specific hints

Info key Default value effect

cray_cb_write_lock_mode 0 Set to “2” to try out “lock ahead”:  

should allow greater concurrency

cray_cb_nodes_multiplier 1 Depending on stripe size and 

number of nodes, “2” or more 

might improve performance

• Hints that only work on Cray systems

• Perfectly fine to pass these (or anything) to any MPI library:  libraries will ignore hints they don’t 
recognize. 

• More cray tuning at https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-
variables 

https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables


Argonne Leadership Computing Facility32

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Data Model Libraries

• Scientific applications work with structured data and desire more self-describing file formats

• PnetCDF and HDF5 are two popular “higher level” I/O libraries

• Abstract away details of file layout

• Provide standard, portable file formats

• Include metadata describing contents

• For parallel machines, these use MPI and probably MPI-IO

• MPI-IO implementations are sometimes poor on specific platforms, in which case libraries might directly 
call POSIX calls instead

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility33

The Parallel netCDF Interface and File Format

• Thanks to Wei-Keng Liao, Alok Choudhary, and Kaiyuan Hou (NWU) for their 
help in the development of PnetCDF.

• https://parallel-netcdf.github.io/ 

https://parallel-netcdf.github.io/
https://parallel-netcdf.github.io/
https://parallel-netcdf.github.io/
https://parallel-netcdf.github.io/


Argonne Leadership Computing Facility34

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Parallel NetCDF (PnetCDF)

• Based on original “Network Common Data Format” (netCDF) work from Unidata
• Derived from their source code

• Data Model:
• Collection of variables in single file

• Typed, multidimensional array variables

• Attributes on file and variables

• Features:
• C, Fortran, and F90 interfaces (no python)

• Portable data format (identical to netCDF)

• Noncontiguous I/O in memory using MPI datatypes

• Noncontiguous I/O in file using sub-arrays

• Collective I/O

• Non-blocking I/O

• Unrelated to netCDF-4 work

• Parallel-NetCDF tutorial:
• https://parallel-netcdf.github.io/wiki/QuickTutorial.html

• Interface guide:
• http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html

• ‘man pnetcdf’ on polaris (after loading module)

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://parallel-netcdf.github.io/wiki/QuickTutorial.html
https://parallel-netcdf.github.io/wiki/QuickTutorial.html
https://parallel-netcdf.github.io/wiki/QuickTutorial.html
https://parallel-netcdf.github.io/wiki/QuickTutorial.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html


Argonne Leadership Computing Facility35

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Parallel netCDF (PnetCDF)

• (Serial) netCDF

• API for accessing multi-dimensional data sets

• Portable file format

• Popular in both fusion and climate communities

• Parallel netCDF

• Very similar API to netCDF

• Tuned for better performance in today’s computing environments

• Retains the file format so netCDF and PnetCDF applications can share files

• PnetCDF builds on top of any MPI-IO implementation

ROMIO

PnetCDF

Lustre

Cluster

Spectrum-MPI

PnetCDF

IBM AC922 (Summit)

GPFS

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility36

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

netCDF Data Model

• The netCDF model provides a means for storing multiple, 
multi-dimensional arrays in a single file.

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility37

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Record Variables in netCDF

• Record variables are defined to have a single 

“unlimited” dimension

• Convenient when a dimension size is unknown at time 

of variable creation

• Record variables are stored after all the other 

variables in an interleaved format

• Using more than one in a file is likely to result in poor 

performance due to number of noncontiguous accesses

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility38

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Pre-declaring I/O

• netCDF / Parallel-NetCDF: bimodal write interface

• Define mode: “here are my dimensions, variables, and attributes”

• Data mode: “now I’m writing out those values”

• Decoupling of description and execution shows up several places

• MPI non-blocking communication

• Parallel-NetCDF “write combining” (talk more in a few slides)

• MPI datatypes to a collective routines (if you squint really hard) 

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility39

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

“Hello world” Parallel-NetCDF style

NC_CHECK(ncmpi_create(MPI_COMM_WORLD, argv[1],

  NC_CLOBBER|NC_64BIT_OFFSET, MPI_INFO_NULL, &ncfile));

    /* just one big string in this silly example */

    NC_CHECK(ncmpi_def_dim(ncfile, "d1", varlen, &dimid));

    NC_CHECK(ncmpi_def_var(ncfile, "v1", NC_CHAR, 1, &dimid, &varid));

    NC_CHECK(ncmpi_enddef(ncfile));

    NC_CHECK(ncmpi_put_vara_text_all(ncfile, varid, &offset, &len, buf));

    NC_CHECK(ncmpi_close(ncfile));

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility40

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Running on Polaris

#!/bin/bash -l

#PBS -A ATPESC2024

#PBS -l walltime=00:10:00

#PBS -l select=1

#PBS -l place=scatter

#PBS -l filesystems=home:eagle

#PBS -q debug

#PBS -N hello-io

#PBS -V

OUTPUT=/eagle/radix-io/${USER}/hello

mkdir -p ${OUTPUT}

NNODES=$(wc -l < $PBS_NODEFILE)

NRANKS_PER_NODE=32

NTOTRANKS=$(( NNODES * NRANKS_PER_NODE ))

cd $PBS_O_WORKDIR

mpiexec -n $NTOTRANKS -ppn $NRANKS_PER_NODE \

        ./hello-pnetcdf ${OUTPUT}/hello-pnetcdf.nc

% ncmpidump /eagle/radix-io/${USER}/hello/hello-pnetcdf.nc
netcdf hello-pnetcdf {
// file format: CDF-2 (large file)
dimensions:
        d1 = 790 ;
variables:
        char v1(d1) ;
data:

 v1 = "Hello from rank 0 of 32\n",
    "Hello from rank 1 of 32\n",
    "Hello from rank 2 of 32\n",
    […]
    "Hello from rank 27 of 32\n",
    "Hello from rank 28 of 32\n",
    "Hello from rank 29 of 32\n",
    "Hello from rank 30 of 32\n",
    "Hello from rank 31 of 32\n",
    "" ;
}

Job submission script Output of “hello-pnetcdf”

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility41

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

HANDS-ON: writing with Parallel-NetCDF

• 2-D array in file, each rank writes ‘YDIM’  (1) rows

• Many details managed by pnetcdf library
• MPI-IO File views

• offsets

• Be mindful of define/data mode: call ncmpi_enddef()

• Library will take care of header i/o for you

1. Define two dimensions
• ncmpi_def_dim()

2. Define one variable
• ncmpi_def_var()

3. Collectively put variable
• ncmpi_put_vara_int_all()

• ‘start’ and ‘count’ arrays: each process selects different regions

4. Check your work with ‘ncdump <filename>’
• Hey look at that: serial tool reading parallel-written data: interoperability at work

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility42

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Solution fragments for Hands-on

/* row-major ordering */

NC_CHECK(ncmpi_def_dim(ncfile, "rows", YDIM*nprocs, &(dims[0])) );

NC_CHECK(ncmpi_def_dim(ncfile, "elements", XDIM, &(dims[1])) );

NC_CHECK(ncmpi_def_var(ncfile, "array", NC_INT, NDIMS, dims,

                &varid_array));

iterations=1;

NC_CHECK(ncmpi_put_att_int(ncfile, varid_array,

                "iteration", NC_INT, 1, &iterations));

start[0] = rank*YDIM; start[1] = 0;

count[0] = YDIM; count[1] = XDIM;

NC_CHECK(ncmpi_put_vara_int_all(ncfile, varid_array, start, count, values) );

Defining dimension: give name, size; get ID

Defining variable: give name, “rank” and dimensions (id); get ID
Attributes: can be placed globally, on variables, dimensions

I/O: ‘start’ and ‘count’ give location, shape of subarray. ‘All’ means collective

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

Hdr

Full example in visualization_io/mpiio-hdf5/hands-on/array

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility43

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Inside PnetCDF Define Mode

• In define mode (collective)

• Use MPI_File_open to create file at create time

• Set hints as appropriate (more later)

• Locally cache header information in memory

• All changes are made to local copies at each process

• At ncmpi_enddef 

• Process 0 writes header with MPI_File_write_at 

• MPI_Bcast result to others

• Everyone has header data in memory, understands placement of all variables

• No need for any additional header I/O during data mode!

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility44

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Inside PnetCDF Data Mode

◼ Inside ncmpi_put_vara_all (once per variable) 

– Each process performs data conversion into internal buffer

– Uses MPI_File_set_view  to define file region

– MPI_File_write_all collectively writes data

◼At ncmpi_close 

– MPI_File_close ensures data is written to storage

◼MPI-IO performs optimizations

– Two-phase possibly applied when writing variables

◼MPI-IO makes PFS calls

– PFS client code communicates with servers and stores data

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility45

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Inside PnetCDF: Darshan heatmap analysis

MPI-IO
POSIX

IOR writing Parallel-NetCDF (see visualization_io/mpiio-hdf5/hands-on/ior/polaris/ior-pnetcdf.sh)

[[1]

[[2]

[[3]

[1]: all processes call MPI write and read – re-reading going to be fast (cached)

[2]: one process wrote header  -- small: just one pixel in POSIX 

[3]: what you don’t see – only “aggregators” actually do I/O

[[2]

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility46

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

HANDS-ON: reading with pnetcdf

• Similar to MPI-IO reader: just read one row

• Operate on netcdf arrays, not MPI datatypes

• Shortcut: can rely on “convention”

• One could know nothing about file as in previous slide

• In our case we know there’s a variable called “array” (id of 0) and an attribute called 
“iteration”

• Routines you’ll need:

• ncmpi_inq_dim to turn dimension id to dimension length

• ncmpi_get_att_int to read “iteration” attribute

• ncmpi_get_vara_int_all to read column of array

4

N
p
ro

c
s

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility47

Solution fragments: reading with pnetcdf

NC_CHECK(ncmpi_inq_var(ncfile, 0, varname, &vartype, &nr_dims,

     dim_ids,&nr_attrs));

NC_CHECK(ncmpi_inq_dim(ncfile, dim_ids[0], NULL, &(dim_lens[0])) );

NC_CHECK(ncmpi_inq_dim(ncfile, dim_ids[1], NULL, &(dim_lens[1])) );

NC_CHECK(ncmpi_get_att_int(ncfile, 0, "iteration", &iterations));

count[0] = dim_lens[0]; count[1] = 1;

starts[0] = 0;     starts[1] = XDIM/2;

NC_CHECK(ncmpi_get_vara_int_all(ncfile, 0, starts, count, read_buf));

Making inquiry about variable, dimensions

The “Iteration” attribute

No file views or datatypes:  just a starting coordinate and size – everyone reads same slice in this case



Argonne Leadership Computing Facility48

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Parallel-NetCDF write-combining optimization

• netCDF variables laid out contiguously

• Applications typically store data in separate variables

• temperature(lat, long, elevation)

• Velocity_x(x, y, z, timestep)

• Operations posted independently, completed 
collectively

• Defer, coalesce synchronization

• Increase average request size

ncmpi_iput_vara(ncfile, varid1, &start, &count, &data, 

 count, MPI_INT, &requests[0]);

ncmpi_iput_vara(ncfile, varid2, &start, &count, &data,

 count, MPI_INT, &requests[1]);

ncmpi_wait_all(ncfile, 2, requests, statuses);

HEADER VAR1 VAR2

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility49

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Example: FLASH Astrophysics

• FLASH is an astrophysics code for

studying events such as supernovae

• Adaptive-mesh hydrodynamics

• Scales to 1000s of processors

• MPI for communication

• Frequently checkpoints:

• Large blocks of typed variables

from all processes

• Portable format

• Canonical ordering (different than

in memory)

• Skipping ghost cells Ghost cell

Stored element

…
Vars 0, 1, 2, 3, … 23

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility50

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

FLASH Astrophysics and the write-combining optimization

• FLASH writes one variable at a time

• Could combine all  4D variables 
(temperature, pressure, etc) into one 5D 
variable

• Altered file format (conventions) requires 
updating entire analysis toolchain

• Write-combining provides improved 
performance with same file conventions

• Larger requests, less synchronization. 

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility51

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

HANDS-ON: pnetcdf write-combining

1. Define a second variable, changing only the name

2. Write this second variable to the netcdf file

3. Convert to the non-blocking interface (ncmpi_iput_vara_int)

• not collective – “collectiveness” happens in ncmpi_wait_all

• takes an additional ‘request’ argument

4. Wait (collectively) for completion

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility52

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Solution fragments for write-combining

NC_CHECK(ncmpi_def_var(ncfile, "array", NC_INT, NDIMS, dims,

                &varid_array));

NC_CHECK(ncmpi_def_var(ncfile, "other array", NC_INT, NDIMS, dims,

  &varid_other));

NC_CHECK(ncmpi_iput_vara_int(ncfile, varid_array, start, count,

                values, &(reqs[0]) ) );

NC_CHECK(ncmpi_iput_vara_int(ncfile, varid_other, start, count,

                values, &(reqs[1]) ) );

/* all the I/O actually happens here */

NC_CHECK(ncmpi_wait_all(ncfile, 2, reqs, status));

Defining a second variable

The non-blocking interface: looks a lot like MPI

Waiting for I/O to complete

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility53

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Hands-on continued

• Look at the darshan output.  Compare to darshan output for single-variable writing or reading

• Results on polaris surprised me:  vendor might know something I don’t

• Maybe some kind of small-io optimization?

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility54

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

PnetCDF Wrap-Up

• PnetCDF gives us

• Simple, portable, self-describing container for data

• Collective I/O

• Data structures closely mapping to the variables described

• If PnetCDF meets application needs, it is likely to give good performance

• Type conversion to portable format does add overhead

• Some limits on (old, common CDF-2) file format:

• Fixed-size variable:  < 4 GiB

• Per-record size of record variable: < 4 GiB

• 232 -1 records 

• Contributed extended file format to relax these limits (CDF-5, released in pnetcdf-1.1.0, 

November 2009, integrated in Unidata NetCDF-4.4)

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility55

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

55

The HDF5 Interface and
File Format

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility56

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

HDF5

• Hierarchical Data Format, from The HDF Group (formerly of NCSA)

• https://www.hdfgroup.org/

• Data Model:

• Hierarchical data organization in single file

• Typed, multidimensional array storage

• Attributes on any HDF5 "object" (dataset, data, groups)

• Features:

• C, C++, Fortran, Java (JNI) interfaces

• Community-supported Python, Lua, R

• Portable data format

• Optional compression (even in parallel I/O mode)

• Chunking: efficient row or column oriented access

• Noncontiguous I/O (memory and file) with hyperslabs

• Parallel HDF5 tutorial:

• https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5

56

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5
https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5


Argonne Leadership Computing Facility57

HDF5 Groups and Links

lat | lon | temp
----|-----|-----
 12 |  23 |  3.1
 15 |  24 |  4.2
 17 |  21 |  3.6

Experiment Notes:

Serial Number: 99378920

Date: 3/13/09

Configuration: Standard 3

/

SimOutViz

HDF5 groups and 

links organize data 

objects

57



Argonne Leadership Computing Facility58

DataMetadata

Dataspace

3

Rank

Dim_2 = 5

Dim_1 = 4

Dimensions

Time = 32.4

Pressure = 987

Temp = 56

(optional)

Attributes

Chunked

Compressed

Dim_3 = 7

Properties

Integer           

Datatype

58

HDF5 Dataset



Argonne Leadership Computing Facility59

59
Datatype: 16-byte integer

Dataspace: Rank = 2

 Dimensions = 5 x 3

3

5

V

HDF5 Dataset



Argonne Leadership Computing Facility60

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

HDF5 Dataspaces 

Two roles:

Dataspace contains spatial information (logical layout) about a dataset stored in a file

• Rank and dimensions

• Permanent part of dataset 
definition

Subsets: Dataspace describes application’s data buffer and data elements participating in 
I/O

Rank = 2

Dimensions = 4x6

Rank = 1

Dimension = 10

60

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility61

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

H5Fcreate (H5Fopen)     create (open) File

 H5Screate_simple/H5Screate  create dataspace

   H5Dcreate (H5Dopen)  create (open) Dataset

       H5Sselect_hyperslab    select subsections of data

       H5Dread, H5Dwrite  access Dataset

   H5Dclose   close Dataset

 H5Sclose        close dataSpace

H5Fclose    close File

NOTE: Order not strictly specified

61

Basic Functions 

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility62

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

“Hello World” HDF5 style

Cannot fit all in one slide: here are some highlights (see ‘hello-hdf5.c’ for full example)

file = H5Fcreate(argv[1], H5F_ACC_TRUNC, H5P_DEFAULT, 

file_access_property_list);

/* in this simple example everyone writes their string to a

 1-d dataset; HDF5 supports variable length arrays ("ragged 

arrays") but these datatypes have odd interactions with parallel 

i/o */

/* like writing to a plain file, we'll create one big variable 

and everyone can write their string to the right (non-

overlapping) place in the file */

hid_t dataset, datatpye, file_space;

hsize_t size=varlen;

file_space = H5Screate_simple(1, &size, NULL);

/* remember we got 'offset' from the MPI_Exscan above */

hsize_t start=offset, count=len;

status = H5Sselect_hyperslab(file_space, H5S_SELECT_SET,

    &start, NULL, &count, NULL);

- “property lists” used a lot in HDF5 (see next 

slide)

- Serial interface came first, with parallel 

features added later

- Lots of flexibility in how memory, file regions described

- Lots more we could say about “hyperslab” 

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility63

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

HDF5 example: opening with MPI-IO

    /* Initialize MPI */

    MPI_Init(&argc, &argv);

    …

    /* Create an HDF5 file access property list */

    fapl_id = H5Pcreate (H5P_FILE_ACCESS);

    

    /* Set file access property list to use the MPI-IO file driver */

    ret = H5Pset_fapl_mpio(fapl_id, MPI_COMM_WORLD, MPI_INFO_NULL);

    /* Create the file collectively */

    file_id = H5Fcreate(argv[1], H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);

    /* Release file access property list */

    ret = H5Pclose(fapl_id);

    

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility64

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

HDF5 example: setting up data transfer

/* Select column of elements in the file dataset */

    file_start[0] = 0;       file_start[1] = mpi_rank;

    file_count[0] = DIM0;    file_count[1] = 1;

    ret = H5Sselect_hyperslab(file_space_id, H5S_SELECT_SET,

            file_start, NULL, file_count, NULL);

    

    mem_start[0] = 0;        mem_count[0] = DIM0;

    ret = H5Sselect_hyperslab(mem_space_id, H5S_SELECT_SET,

            mem_start, NULL, mem_count, NULL);

    /* Set up the collective transfer properties list */

    dxpl_id = H5Pcreate(H5P_DATASET_XFER);

    ret = H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE);

    /* Write data (one column of doubles) collectively */

    ret = H5Dwrite(dset_id, H5T_NATIVE_DOUBLE, mem_space_id,

            file_space_id, dxpl_id, write_buf);

D
IM

0

nprocs

…

DIM0 elements

…

MEMORY

FILE

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility65

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Effect of HDF5 Tuning

• HDF5 property lists can have big impact on 
internal operations

• Collective I/O vs. Independent I/O

• Huge reduction in operation count

• Implies all processes hit I/O at same time

• Collective metadata (new in 1.10.2)

• Further reduction in op count, especially reads 
(reading HDF5 internal layout information)

• Big implications for performance at scale

65

Operation counts Independent Coll. 

I/O

Coll. MD

POSIX Write 3680007 9 9

MPI-IO Indep write 3680007 7 0

MPI IO Collective 

Write

0 16 48

POSIX Read 3680113 115 10

MPI-IO indep read 3680113 113 8

MPI-IO collective read 0 16 16

Selected Darshan statistics for 16 MPI processes writing 230 K 

doubles to HDF dataset, reading back same.
visualization_io/mpiio-hdf5/hands-on/hdf5/h5par-comparison.c

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility66

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Effect of HDF5 Tuning

• HDF5 property lists can have big impact on 
internal operations

• Collective I/O vs. Independent I/O

• Huge reduction in operation count

• Implies all processes hit I/O at same time

• Collective metadata (new in 1.10.2)

• Further reduction in op count, especially reads 
(reading HDF5 internal layout information)

• Big implications for performance at scale

66

MPI-IO POSIX in
d
e
p
e
n
d
e
n
t

c
o

lle
c
tiv

e

visualization_io/mpiio-hdf5/io-sleuthing/examples/hdf5

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop


Argonne Leadership Computing Facility67

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

HDF5 in other languages

• Python:

• H5py:  http://www.h5py.org/  

• closely coupled with mpi4py and numpy;  

• some collective tuning not exposed at python level

• C++:

• Highfive: https://github.com/BlueBrain/HighFive 

• header-only interface to HDF5 C API

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
http://www.h5py.org/
https://github.com/BlueBrain/HighFive


Argonne Leadership Computing Facility68

New HDF5 features:

• New in HDF5-1.14.0

• Async operations

• Potential for background progress

• Multi-dataset I/O

• Similar to pnetcdf “operation combining”



Argonne Leadership Computing Facility69

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Data Model I/O libraries

▪ Parallel-NetCDF: http://www.mcs.anl.gov/pnetcdf

▪ HDF5: http://www.hdfgroup.org/HDF5/

▪ NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
– netCDF API with HDF5 back-end

▪ ADIOS: http://adiosapi.org
– Configurable (xml) I/O approaches

▪ SILO: https://wci.llnl.gov/codes/silo/
– A mesh and field library on top of HDF5 (and others)

▪ H5part: http://vis.lbl.gov/Research/AcceleratorSAPP/
– simplified HDF5 API for particle simulations

▪ GIO: https://svn.pnl.gov/gcrm
– Targeting geodesic grids as part of GCRM

▪ PIO:
–  climate-oriented I/O library; supports raw binary, parallel-netcdf, or serial-netcdf (from master)

▪ … Many more: consider existing libs before deciding to make your own.

▪ Note absence of a “machine learning” library – research opportunity for someone!

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
http://www.mcs.anl.gov/pnetcdf
http://www.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://adiosapi.org/
https://wci.llnl.gov/codes/silo/
https://svn.pnl.gov/gcrm


Argonne Leadership Computing Facility70

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

code etc: https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop  

Wrap-up

• Lots of activity, history making I/O better… Still a lot to do!

• Workflow, task-oriented, AI/ML

• ALCF consultants, research community eager to help

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

	Slide 1
	Slide 2: I/O libraries for Parallel Perf Part 1: MPI-IO
	Slide 3: MPI-IO
	Slide 4: “Hello World” MPI-IO style: contiguous
	Slide 5: “Hello World” MPI-IO style: non-contiguous in memory
	Slide 6: “Hello World” MPI-IO style: non-contiguous in file
	Slide 7: RUNNING
	Slide 8: Output on Aurora
	Slide 9: Under the hood: DAOS (essentially)
	Slide 10: Key takeaways
	Slide 11: The IOR benchmark
	Slide 12: Hands-on: IOR and stripe size
	Slide 13: Contention in benchmarkig
	Slide 14: Hands on: IOR and stripe count
	Slide 15: Decomposition
	Slide 16: Contiguous and Noncontiguous I/O
	Slide 17: I/O Transformations
	Slide 18: Request Size and I/O Rate
	Slide 19: Reducing Number, Increasing Size of Operations
	Slide 20: Noncontig with IOR
	Slide 21: Darshan: Characterizing Application I/O
	Slide 22: How does Darshan work?
	Slide 23: Data Sieving in Practice
	Slide 24: Data Sieving: time line
	Slide 25: Avoiding Lock Contention
	Slide 26: Two-Phase I/O Algorithms
	Slide 27: Two-phase I/O in Practice
	Slide 28: More investigation: Darshan heatmaps (Polaris, Lustre)
	Slide 29: DAOS: Collective I/O vs scatter-gather I/O
	Slide 30: Tuning MPI-IO: info objects
	Slide 31: Tuning MPI-IO: cray-specific hints
	Slide 32: Data Model Libraries
	Slide 33:  The Parallel netCDF Interface and File Format
	Slide 34: Parallel NetCDF (PnetCDF)
	Slide 35: Parallel netCDF (PnetCDF)
	Slide 36: netCDF Data Model
	Slide 37: Record Variables in netCDF
	Slide 38: Pre-declaring I/O
	Slide 39: “Hello world” Parallel-NetCDF style
	Slide 40: Running on Polaris
	Slide 41: HANDS-ON: writing with Parallel-NetCDF
	Slide 42: Solution fragments for Hands-on
	Slide 43: Inside PnetCDF Define Mode
	Slide 44: Inside PnetCDF Data Mode
	Slide 45: Inside PnetCDF: Darshan heatmap analysis
	Slide 46: HANDS-ON: reading with pnetcdf
	Slide 47: Solution fragments: reading with pnetcdf
	Slide 48: Parallel-NetCDF write-combining optimization
	Slide 49: Example: FLASH Astrophysics
	Slide 50: FLASH Astrophysics and the write-combining optimization
	Slide 51: HANDS-ON: pnetcdf write-combining
	Slide 52: Solution fragments for write-combining
	Slide 53: Hands-on continued
	Slide 54: PnetCDF Wrap-Up
	Slide 55:   
	Slide 56: HDF5
	Slide 57: HDF5 Groups and Links
	Slide 58
	Slide 59: HDF5 Dataset
	Slide 60: HDF5 Dataspaces 
	Slide 61: Basic Functions 
	Slide 62: “Hello World” HDF5 style
	Slide 63: HDF5 example: opening with MPI-IO
	Slide 64: HDF5 example: setting up data transfer
	Slide 65: Effect of HDF5 Tuning
	Slide 66: Effect of HDF5 Tuning
	Slide 67: HDF5 in other languages
	Slide 68: New HDF5 features:
	Slide 69: Data Model I/O libraries
	Slide 70: Wrap-up

