October 7-9, 2025

‘.

o A

ALCF Hands-on
HPC Workshop

g - g - - ./ - -
- - .
// 4" -

AAAAAAAAAAAAAAAAAA

I/O libraries for Parallel Pertf
Part 1: MPI-IO

Using and tuning MPI-IO and HDF5

Rob Latham ()
Math and Computer Science
Argonne National Laboratory

mailto:robl@mcs.anl.gov

I 3 Argonne Leadership Computing Facility

I/O interface specification for use in MPI| apps

Data model is same as POSIX: stream of bytes in a file

Like classic POSIX in some ways...
 Open() - MPI_File_open()
* Pwrite() > MPI_File_write()
* Close() > MPI_File_close()
Features many improvements over POSIX:
« Collective I/O
* Noncontiguous I/O with MPI datatypes and file views

» Nonblocking I/O
» Fortran bindings (and additional languages)

Implementations available on most (all?) platforms

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

Argonne &

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

“Hello World” MPI-IO style: contiguous

/* an "Info object": these store key-value strings for tuning the
* underlying MPI-IO implementation */
MPI_Info_create(&info);

snprintf(buf, BUFSIZE, "Hello from rank %d of %d\n", rank, nprocs); Rank 0

len = strlen(buf); 24 byteS at0

/* We're working with strings here but this approach works well

* whenever amounts of data vary from process to process. */ Rank 1:
MPI_Exscan(&len, &offset, 1, MPI_OFFSET, MPI_SUM, MPI_COMM_WORLD); 24 bytes at 24

MPI_CHECK(MPI_File open(MPI_COMM_WORLD, argv[1],
MPI_MODE_CREATE|MPI_MODE_WRONLY, info, &fh));

/* _all means collective. Even if we had no data to write, we would
* still have to make this call. 1In exchange for this coordination, Hello from... Hello from...
* the underlyng library might be able to greatly optimize the I/0 */

MPI_CHECK(MPI_File write_at_all(fh, offset, buf, len, MPI_CHAR,

&status));

MPI_CHECK(MPI_File_close(&fh));

4 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands on_HPC_Workshop Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

“Hello World” MPI-IO style: non-contiguous in memory

MPI_Datat type;
Datatype memtype Hellolfrom rank1'6f 16

MPI_Count memtype_size;

lengths” and “displacements”. each
* Le string: : -
/ ;:’Z’Zoefiogl’;gnk s of 16 rank sends first six and last ten
________________ characters to file

*

the '-' indicates which elements an indexed type with
Lengths 6 and 16 at displacemnts @ and
* "10 from end of string" would select: */

x* ¥ ¥

int lengths[2] = {6, 10}; Rank O:
int displacements[2] = {0, len-10};
MPI_Type_indexed(2, lengths, displacements, MPI_CHAR, &memtype); 6+10 byteS at0

MPI_Type_commit(&memtype);

MPI_Type_size x(memtype, &memtype size); Rank 1:

MPI_CHECK(MPI_File write_at_all(fh, offset, buf, 1, memtype, 6+10 bytes at 16
&status));

L v

Hello k 0 of 16 | Hello k 1 of 16

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonnea

I 5 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

“Hello World” MPI-IO style: non-contiguous in file

/* noncontiguous in file requres a "file view*/
MPI_Datatype viewtype;
int *displacements; Hello from rank O of 16

displacements = malloc(len*sizeof(*displacements));

/* each process will write to its own "view" of the file:
* Rank ©:

*Hel Lo from ...
* Rank 1:

*‘Hel lo from...
*/
for (int i=0; i< len; i++)
displacements[i] = rank+(i*nprocs); H H
MPI_Type_create_indexed_block(len, 1, displacements, MPI_CHAR, &viewtype);
MPI_Type_commit(&viewtype);
free(displacements);

MPI_CHECK(MPI File open(MPI COMM WORLD, argv[1], While this access describes lots of small

MPI_MODE_CREATE |MPI_MODE_WRONLY, info, &fh)); regions, the library sees it as one single
MPI_ CHECK(MPI File set view(fh, ©, MPI_CHAR, viewtype, , info)); access and can optimize.
MPI CHECK(MPI File write_at all(fh, offset, buf, len, MPI CHAR,
&status));
code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneé

6 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

« Submit to the ‘alcf training’ queue and use the ‘alcf _training’ project (aurora)

» |'ve provided a ‘hello-aurora.sh’ shell script
e gsub -A alcf _training -q alcf _training ./hello-aurora.sh

« WEe'll use the DAOS file system
« ALCF has made a “alcf_training” pool on the “daos_user” service

« Job script will create your own container inside that pool
* daos container create --type POSIX $DAOS_POOL $DAOS_CONT

« DAOS is always running, but we have to “launch” the legacy file system view of it
* launch-dfuse_perf.sh ${DA0OS POOL}:${DAOS CONT}

* Now shell tools can operate on /tmp/${DA0S_POOL}/${DAOS_CONT}

» There’s a special “cpu binding” to place processes such that they use all 8 Aurora network cards.

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

I 7 Argonne Leadership Computing Facility

Argonne &

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Output on Aurora

==== contiguous in memory and file ==== noncontiguous in file

cat /tmp/ATPESC2025 0/robl-hello/hello.out cat /tmp/ATPESC2025 0/robl-hello/hello-
Hello from rank © of 16 view.out

Hello from rank 1 of 16 HHHHHHHHHHHHHHHHeeeeeeeeeeeeeeeel 111111
- 111111111111111111111111100000000000000
Hello from rank 15 of 16 00

fffffffffffffffreeeeeeeerrerrrrroooo0000
00000000OMmMmmMmMmMmmmmmmmmmmm

==== noncontiguous in memory rrererrerererrerrrraaaaaaaaaaaaaaaannnnnnn
cat /tmp/ATPESC2025 0/robl-hello/hello- nnnnnnnnnkkkkkkkkkkkkkkkk

noncontig.out 1111110123456789012345

Hello k @ of 16 0000000000000000FFffffffffffffff

Hello k 1 of 16 11111111111111116666666666666666

Hello 15 of 16

Output of our hello programs

. . . : https:/gi : Argonne &
I 8 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands on_HPC_Workshop goNne w=»

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Under the hood: DAOS (essentially)

/ \ POSIX Container objects DKEYS:
Hello-io -> inodeX
£5747540620738>0.9 hello-noncontig/-> inodeY
2814754062073857 .0 Hello-view -> inode?Z

container? 029571296501401038 . 152
inodeX

939571297230848002.128

939571296817209422.64 - Mode
robl-hello - - Object id

Data objects - Uid

- Gid
- Mtime

DAOS servers DAOS Container -
daos container list-objects alcf_training robl-hello
DAOS POOL
daos pool list-containers alcf_training
I 9 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC Workshop Argonne&

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Key takeaways

« Simple example but still captures important concepts
* Info objects: tuning parameters:
» enable/disable optimizations
« Adjust buffer sizes
« Select alternate strategies
« Data placement in file specified by user
« ‘“shared file pointer” possible but not optimized
» Collective vs independent 1/O
* Error checking!!!

I 10 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF _Hands on HPC Workshop Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

The IOR benchmark

« MPI application benchmark
* reads and writes data in configurable ways
* 1/O pattern can be interleaved or random

* |nput:
» transfer size, block size, segment count
* interleaved or random

* Output: Bandwidth and IOPS

« Configurable backends
« POSIX, STDIO, MPI-IO
 HDF5, PnetCDF, S3, rados

https://github.com/hpcl/ior

segment 1 <

segment 2 —

.

\

|

transfersSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

fransfersize

fransfersize

fransfersize

fransfersize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

transferSize

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

I 11 Argonne Leadership Computing Facility

} block for rank O
} block for rank 1

T

block forrank2 O

@,

—

O

oD

block for rank 0 i

)
} block for rank 1
} block for rank 2

v

Argonne &

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://github.com/hpc/ior

Hands-on: IOR and stripe size

» For a fixed number of nodes, MPI
processes, block size, and transfer

size... $stripe=1
. rm -f ${OUTPUT}/ior-stripe-$stripe.out
* Vary the stripe count export IOR_HINT _MPI_ striping factor=$stripe

« |OR environment variables # -a MPIIO: using MPI-IO so we Fan pass the "str‘iping_factor‘" hint
-e : fsync after each write phase: push out dirty data to storage

- MPICH Config file # -C : reorder ranks: read from a different rank than the one that wrote
-s : segments: each client will write to eight regions
-1 : repeat experiment five times: lots of variability in I/O
-t : transfer size: how big each request will be
-b : block size: how big each region will be in the file (needs to

be a multiple of transfer size).

mpiexec -n ${NTOTRANKS} --ppn ${NRANKS_PER_NODE} \
ior --mpiio.showHints -a MPIIO \
-e -C -s 8 -1 5\
-t 1MiB -b 64MiB -0 ${OUTPUT}/ior-stripe-$stripe.out

00000 11111 22222 m

code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneb

12 Argonne Leadership Computing Facility

NATIONAL LABORATORY

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Contention in benchmarkig

Machine
Ideal: 100% of less bbusty
storage novlv, u
available for ;ﬁe;)er]schg
-)
O benchmarking Reality: have to — boo!
c share with
Q everyone else l
c
@)
@)
S~—
| | | | I
| A It | | |
Installed Acceptance Early Production Retirement

testing Access

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonnea

I 13 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Hands on: IOR and stripe count

|IOR performance vs stripe count

Default stripe size is 1 oo] 1 128 nodes
= Why? Most files small: optimizing for common case i Read

« “All the servers” doesn’t seem to hurt performance here 80
= |fs setstripe -1 /path/to/file

60

« Could go further with “overstriping”
= Didn’t work on Polaris: investigating

* “Where's my bandwidth?”

Bandwidth (GiB)

40 -

= 128 nodes (network links) here 20 -
= Shared file (so | can experiment with stripe count) means
lustre locking overhead/coordination 0
. (IZI 2ID 4ID GID BID l[l}'D li_;(} lﬁIIO l(ISD
= Graph at right from February 2023 — any changes stripe count
today?

visualization_io/mpiio-hdf5/io-sleuthing/examples/striping

I 14 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF _Hands on HPC Workshop Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Decomposition

Latituz

Typical simulations divide up the region belng
simulated into chunks, then group those
chunks into similar amounts of work.

(LTI T T T T ————
Graphic from J. Tannahill, LLNL A

’ [T T T T T T e

These regions are then I [[[[[e

distributed to cores
(columns) on nodes
(grey boxes) far
computation.

- 2
i

N
N

N VAN VAN VAN J NP PR

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

I 15 Argonne Leadership Computing Facility

When speed of
writing is the priority,
blobs of data are
written from each
node into individual
files that must then
be post-processed
for analysis.

To prepare data for
analysis, a code
can write in a
canonical view by
processing the
data while it is in
memory, resulting
in a better
organized dataset.

Argonne &

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Contiguous and Noncontiguous |/O

« Contiguous I/O moves data from a single memory block into a
single file region
* Noncontiguous I/O has three forms:
* Noncontiguous in memory
* Noncontiguous in file
* Noncontiguous in both

« Structured data leads naturally to noncontiguous 1/O (e.g., Noncontiguous Noncontiguous
block decomposition) in File in Memory

« Describing noncontiguous accesses with a single operation
passes more knowledge to I/O system

I — ™
Vars 0,1, 2, 3, ... 23

B Ghost cell
B Stored element

Extracting variables from a block
and skipping ghost cells will

code etc: https://github.com/argonne-Icf/ALCF Hands on rﬁﬁlﬂ!t Wo%ﬂggntlguous U

I 16 Argonne Leadership Computing Facility Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

/O Transformations

Software between the application and the PFS performs transformations, primarily to improve performance

B Goals of transformations: Process 0 | | Process | Process 2
—Reduce number of 1/O operations to PFS ’ % %
(avoid latency, improve bandwidth) NN N A~/

— Avoid lock contention (eliminate serialization)
—Hide huge number of clients from PFS
servers
B “Transparent” transformations don't
change the final file layout When we think about 1/0

. : : transformations, we consider
—File system is still aware of the actual data .
. : the mapping of data between
organization

. . _ _ application processes and
—File can be later manipulated using serial locations in file
POSIX I/O

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonnea

17 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Request Size and |/O Rate

Sawtooth due to

IOR performance vs transfer size

“power of 10” vs T wite
“power of 2” 120 -
differences
Small I/O @ 801
transfers £
dominated by 2
network .
performance/ \
Iln general, overhead .
arger 5
requests ol
better. T ————r s e

transfer size (bytes)

Tests run on 128 nodes, 16 process per node (2048 processes total)
of HPE/Cray/Intel Auroa at Argonne, writing to DAOS

I 18 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF _Hands on HPC Workshop Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Reducing Number, Increasing Size of Operations

 Because most operations go over the network, I/O to a PFS incurs more latency than with a
local FS

« Data sieving is a technique to address I/O latency by combining operations:
« When reading, application process reads a large region holding all needed data and pulls out what is
needed
* When writing, three steps required (below)

Application Process
Memory
v v - .
Buffer
B 2 P g g S
I N S U RIS
S O O 1 E
Step I: Data in region to be Step 2: Elements to be Step 3: Entire region is
modified are read into written to file are replaced written back to storage with
intermediate buffer (I read). in intermediate buffer. a single write operation.
code etc: https://github.com/argonne-Icf/ALCF _Hands_on_HPC_Workshop Argonnea

I 19 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Noncontig with IOR

» |OR can describe access with an MPI datatype
e --mpiio.useStridedDatatype -b .. -s ..

« (buggy in recent versions: use 4.0rc1 or newer)

blocksize segment count: 4
- e
| | | |

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonnea

I 20 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Darshan: Characterizing Application I/O

How is an application using the 1/0 system?
How successful is it at attaining high performance?

Simplified HPC 1/O stack
at the application and library

level Aiilication /0O access
« What did the application intend to do?

File system access

Strategy: observe 1/0 behavior

* How much time did it take to do it?
* What can be done to tune and improve? File system

Block access

‘ Storage devices ‘

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonnea

I 21 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

How does Darshan work?

- Darshan records file access statistics - Application
independently on each process s [t o
- At app shutdown, collect, aggregate, g2 CpEEE MO
compress, and write log data s | pEEE POSIX 1O
: Afterjob completes, analyze Darshan log data ME=3Fs] os
darshan-parser - provides complete text-format reduce / b name POSIX MPLIO HDFS Lustre
dump of all counters in a log file compress / header reJcord records records records records records
PyDarshan - Python analysis module for Darshan write =
logs, including a summary tool for creating HTML =3 . . - . .
reports = =

- Originally designed for MPI applications, but in recent Darshan versions (3.2+) any

dynamically-linked executable can be instrumented

> In MPI mode, a log is generated for each app
> In non-MPI mode, a log is generated for each process

> More 1information: https://docs.alcf.anl.qgov/theta/performance-tools/darshan/ or
Shane’s (concurrent) session

22
22 Argonne Leadership Computing Facility Argonne &

https://docs.alcf.anl.gov/theta/performance-tools/darshan/
https://docs.alcf.anl.gov/theta/performance-tools/darshan/
https://docs.alcf.anl.gov/theta/performance-tools/darshan/

Data Sieving in Practice

Not always a win, particularly for writing:

« |OR benchmark, fixed file size, increasing segments
« Enabling data sieving instead made writes slower: why?

« Locking to prevent false sharing (not needed for reads) - —

« Multiple processes per node writing simultaneously _

 Internal ROMIO buffer too small, resulting in write MPI-1O writes 960 960
amplification [1]

Noncontiguous Writes with I0R MPI-IO Reads 0 0
RN e) Posix Writes 4 800 000 4 800 000
- Posix Reads 0 4 800 784
nEE MPI-10 bytes written 8.9 GiB 8.9 GiB
g w00 | | MPI-10 bytes read 0 0
- / Posix bytes read 0 2334 GiB
50 | [1] Posix bytes written 8.9 GiB 2343 GiB
Runtime (sec) 68.8 404.2

o n w00 1500 13000 Selected Darshan statistics for 5000 segments

Pieces
I 23 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF _Hands_on_HPC_Workshop Argonne)

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Data Sieving: time line

Top: MPI 1/O call SEXXPLQRER s SIS QBTN
describing *
noncontiguous -
regions
One MPI I/O
call (top) turns =
into many
POSIX
operations
(below)
Independent: no
coordination - T T T T T T o S PO P
possible. Each - i N ML SR T R I
process does its . : SRS BN R L R L S, LI R
own data - T E =F
sieving. Gaps — 0 — L —— 4
between e R TR A T TP -
operations T CR R R AN L
show lock
acquisition. _Runt_m_e i
hitps://github.com/hpc-io/dxt-explorer Interactive log analysis tool by Jean Luca Bez
I 24 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_ Workshop Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://github.com/hpc-io/dxt-explorer
https://github.com/hpc-io/dxt-explorer
https://github.com/hpc-io/dxt-explorer
https://github.com/hpc-io/dxt-explorer
https://github.com/hpc-io/dxt-explorer

Avoiding Lock Contention

To avoid lock contention when writing to a shared file, we can reorganize data between
processes

Two-phase I/0 splits /O into a data reorganization phase and an interaction with the storage system
(two-phase write depicted):

Data exchanged between processes to match file layout
Oth phase determines exchange schedule (not shown)

Process 0 Process | Process 2 Process 0 Process | Process 2
Memory [] | | | : H B B H B B H B B
Buffer T
» & >
Server 0 Server | Server 2 ro Server| | Sery,
1 22
File ‘ o [IJ

Phase |: Data are exchanged between

processes based on organization of data
in file.

Phase 2: Data are written to file (storage
servers) with large writes, no contention.

I 25 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF _Hands on HPC Workshop

Argonne &

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Two-Phase I/O Algorithms

Imagine a collective I/O access Offset in File -
using four aggregators to a file LI T e [[[N [[[[[[[e
striped over four file servers A 0 |
(indicated by colors): Stripe Unit Lock Extent of Accesses

Boundary
One approach is to evenly © Aggregator | | Aggregator2 ! Aggregator3 | Aggregator4
divide the region accessed C L[[DODei] [[B [[[DOpen | [[.

across aggregators. 1T T

Aligning regions with lock > >

boundaries eliminates lock : ' i
) Aggregator | '+ Aggregator 2 | regator 3
contention. j - 3 ' 8 | Aggreg

Mapping aggregators to servers
reduces the number of
concurrent operations on a
single server and can be helpful
when locks are handed out on
a per-server basis (e.g., Lustre).

For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective 1/0
Based on Underlying Parallel File System Locking Protocols,” SC2008, November 2008.

26 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands on_HPC_Workshop Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Two-phase /O in Practice

» Consistent performance independent of access pattern

* Note re-scaled y axis [1]
» No write amplification, no read-modify-write
« Some network communication but networks are fast

» Requires “temporal locality” -- not great if writes

Noncontiguous Writes with IOR

L

No Data Sieving —— ' i
[1] 70 - Data Sieving Enabled ——— !
Two-phase : /
| /
\ /
60 - | .‘f‘
| /
IX
50 - .
C a0l
@
E
'—
30
20 - / /
/ /
) /
10 - P
0. _7_7_7_7_7_ 4?""-
1 10 100 1000

Pieces

I 27 Argonne Leadership Computing Facility

V 10000

“skewed”’, imbalanced, or

MPI-IO writes
MPI-10 Reads
Posix Writes

Posix Reads
MPI-10 bytes written
MPI-10 bytes read
Posix bytes read
Posix bytes written

Runtime (sec)

Selected Darshan statistics, 5000 segments

Data Sieving | Two-phase

some irocess enter collective late.

960

0

4 800 000

0

8.9 GiB

0

0

8.9 GiB

68.8

960

0

4 800 000

4 800 784

8.9 GiB

0

2334 GiB

2343 GiB

404.2

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

960

0

9156
8.9 GiB

8.9 GiB

1.56

Argonne &

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

More investigation: Darshan heatmaps (Polaris, Lustre)

Data sieving Data sieving disabled Collective buffering
. I -lII-n-JIIhn-n e e 1111 11 1
100
253 o 253 106 . 253 .
£ -] £
H 5 5
O 187 10° g 187 =) » 187 ’é"
5 g £ 10° ¢ 5 s o
- <132 @ “ 132 a = 132 -
N 10° % -2 £
% 66 ° 66 1047 66 - °
00 § § m Time bi 190 100 ° = 3 a E Time bl 130 02; f : 3 Time bins: 47
Time (s) . Time (s) Time (s)
. II||||I| |||||I|||
. T
_ 253 . Y

== 2 s_g T T {;J
>< EIT=T e : T T :
— T T 'o i § . 187 - E
(D =3 5 = &:: - 10°
O | @ @ 132 - 0)
| 2 2 - 8
—— © ©
o —_— 8 g 66 | — - e

TSN T . T

4 0 m mE '

o § § E Time bins: 190 g f : : Time b
Time (s) = Time (s)

Effect of ROMIO optimizations on IOR benchmark: 5000 non-contiguous segments, three iterations. Note the x axis

I 28 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF _Hands on HPC Workshop Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

DAOS: Collective I/O vs scatter-gather I/O

Same IOR experiment but on Aurora this time

* 2 nodes, 96 processes per node
List-10 lets us avoid two sources of overhead

* “rounds” of I/O — no buffering at intermediate aggregator

» No network exchange of data
tuned: — asking for more aggregators per node lets us use all 8
network cards
Since List-1O does not aggregate, could be a problem at larger
scale (evaluation “on my list”)

* Obviously, combining both approaches would be great

(that’s “on my list” now too...)

IOR write time as degree of noncontig increases

— collective
tuned collective
| = list-io

Time (seconds)
[%] w = un [=2] -
i i i i

=
I

T T T T
10t 10! 10d 103 10f 10

MPI-10 writes 1152
MPI-IO Reads 0
DAQOS Writes 696
DAQOS Reads 0
MPI-IO bytes written 10.7 GiB
MPI-10 bytes read 0
DAOS bytes read 0
DAOS bytes written 10.7 GiB
Max MPI-1O write time 1.335 sec
Max DAQOS write time 3.10

msec

10.7 GiB

0.35 sec

3.485
msec

10.7 GiB
0.22 sec

0.22 sec

Selected Darshan statistics, 5000 segments

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

29 Argonne Leadership Computing Facility

Argonne &

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Tuning MPI-IO: info objects

* You will likely never need these, but can help in specific situations:

* Both keys and values are strings

* Applicable to all ROMIO-based MPI-10 libraries

Hint _______|Default Value effect

cb_buffer_size

romio_cb read
romio_cb_write

romio_no_indep_rw
cb_config_list

Cb_config_list

I 30 Argonne Leadership Computing Facility

16777216

Enable (on cray)
automatic (ROMIO)

True
“**” (on Cray) or “*:1” elsewhere

Default is “*:1” but should be “*:8” or
higher

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

An internal buffer for “two phase i/0”.
Bigger value takes away application
memory, but results in fewer rounds of
I/O

Turn on/off collective i/o: code will fall
through to independent case

“deferred open” — only i/o aggregators
open the file. Open time not usually
dominant factor unless total 1/0
moved per file fairly small

Aurora has eight network cards and
needs 8 or more processes to obtain
highest bandwidth

Argonne &

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Tuning MPI-IO: cray-specific hints

» Hints that only work on Cray systems

» Perfectly fine to pass these (or anything) to any MPI library: libraries will ignore hints they don’t
recognize.

» More cray tuning at htips://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-
variables

Info key Default value T

cray_cb_ write_lock _mode 0 Set to “2” to try out “lock ahead”:
should allow greater concurrency
cray_cb_nodes_multiplier 1 Depending on stripe size and

number of nodes, “2” or more
might improve performance

Argonne &
31 Argonne Leadership Computing Facility EONNE, =

https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html#mpi-io-environment-variables

Data Model Libraries

« Scientific applications work with structured data and desire more self-describing file formats

* PnetCDF and HDF5 are two popular “higher level” I/O libraries
» Abstract away details of file layout
* Provide standard, portable file formats
* Include metadata describing contents

» For parallel machines, these use MPI and probably MPI-10

 MPI-IO implementations are sometimes poor on specific platforms, in which case libraries might directly
call POSIX calls instead

I 32 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF _Hands on HPC Workshop Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

The Parallel netCDF Interface and File Format

« Thanks to Wei-Keng Liao, Alok Choudhary, and Kaiyuan Hou (NWU) for their
help in the development of PnetCDF.

* https://parallel-netcdf.github.io/

33 Argonne Leadership Computing Facility Argonne &

https://parallel-netcdf.github.io/
https://parallel-netcdf.github.io/
https://parallel-netcdf.github.io/
https://parallel-netcdf.github.io/

Parallel NetCDF (PnetCDF)

Based on original “Network Common Data Format” (netCDF) work from Unidata
» Derived from their source code

Data Model:
» Collection of variables in single file
* Typed, multidimensional array variables
» Attributes on file and variables

* Features:
« C, Fortran, and F90 interfaces (no python)
* Portable data format (identical to netCDF)
* Noncontiguous I/O in memory using MPI datatypes
* Noncontiguous I/O in file using sub-arrays
« Collective I/O
* Non-blocking I/0

 Unrelated to netCDF-4 work

e Parallel-NetCDF tutorial:
e https://parallel-netcdf.github.io/wiki/Quick Tutorial.html

* Interface guide:
« http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html
* ‘man pnetcdf’ on polaris (after loading module)

34 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands on_HPC_Workshop Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://parallel-netcdf.github.io/wiki/QuickTutorial.html
https://parallel-netcdf.github.io/wiki/QuickTutorial.html
https://parallel-netcdf.github.io/wiki/QuickTutorial.html
https://parallel-netcdf.github.io/wiki/QuickTutorial.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html

Parallel netCDF (PnetCDF)

« (Serial) netCDF

Cluster
« API for accessing multi-dimensional data sets
» Portable file format PnetCDF
* Popular in both fusion and climate communities
ROMIO

« Parallel netCDF
 Very similar API to netCDF Lustre

* Tuned for better performance in today’s computing environments
Retains the file format so netCDF and PnetCDF applications can share files
- PnetCDF builds on top of any MPI-IO implementation IBM AC922 (Summit)

PnetCDF

Spectrum-MPI

GPFS

I 35 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF _Hands_on_HPC_ Workshop Argonneé

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

netCDF Data Model

 The netCDF model provides a means for storing multiple,
multi-dimensional arrays in a single file.

Application Data Structures

Double temp

< R R

26

Float surface_pressure

512
—

12

36 Argonne Leadership Computing Facility

netCDF File "checkpoint07.nc"

Variable "temp" {
type = NC_DOUBLE,
dims = {1024, 1024, 26},
start offset = 65536,
attributes = {"Units" = "K"}}

Variable "surface_pressure" {
type = NC_FLOAT,
dims = {512, 512},
start offset = 218103808,
attributes = {"Units" = "Pa"}}

314 U1 19sYO

< Data for "temp" >

< Data for "surface_pressure" >

V//_L

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

netCDF header describes
the contents of the file:
typed, multi-dimensional
variables and attributes

on variables or the dataset
itself.

Data for variables is stored
in contiguous blocks,
encoded in a portable binary
format according to the
variable's type.

Argonne &

NATIONAL LABORATORY

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Record Variables in netCDF

» Record variables are defined to have a single S, netCDF Header
“unlimited” dimension B[[1st nonrecord variable
 Convenient when a dimension size is unknown at time o 9nd non-record variable
of variable creation ,E:M 1
+ Record variables are stored after all the other Sl T
variables in an interleaved format ||| men nonrecord vartabie

1zt Eecord for 1=t ERecord Yar
1zt Record for 2nd Record ¥ar

« Using more than one in a file is likely to result in poor
performance due to number of noncontiguous accesses

r""-.
e

iy

T

1zt Record for rth Record ¥ar

Z2nd Record for 1st,
2nd, ..., rth Record
Variables 1n order

Record Data

!

:Er’____J:J,_____zr

Records grow in the THLINITED
. dimension for 1,2,..., rth war

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonnea

I 37 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Pre-declaring 1/O

» netCDF / Parallel-NetCDF: bimodal write interface
« Define mode: “here are my dimensions, variables, and attributes”
« Data mode: “now I'm writing out those values”

» Decoupling of description and execution shows up several places
* MPI non-blocking communication
« Parallel-NetCDF “write combining” (talk more in a few slides)
« MPI datatypes to a collective routines (if you squint really hard)

I 38 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF _Hands_on_HPC_ Workshop Argonne&

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

“Hello world” Parallel-NetCDF style

NC CHECK (ncmpi create (MPI COMM WORLD, argv([l],
NC CLOBBER|NC 64BIT OFFSET, MPI INFO NULL, &ncfile));

/* just one big string in this silly example */

NC CHECK (ncmpi def dim(ncfile, , varlen, &dimid));

NC CHECK (ncmpi def var (ncfile, , NC CHAR, 1, &dimid, &varid));
NC CHECK (ncmpil enddef (ncfile));

NC CHECK (ncmpil put vara text all(ncfile, varid, é&offset, &len, buf));

NC CHECK (ncmpi close (ncfile));

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonnea

I 39 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Running on Polaris

#!/bin/bash -1

#PBS -A ATPESC2024

#PBS -1 walltime=00:10:00

#PBS -1 select=1

#PBS -1 place=scatter

#PBS -1 filesystems=home:eagle
#PBS -q debug

#PBS -N hello-io

#PBS -V

OUTPUT=/eagle/radix-io/${USER}/hello
mkdir -p ${OUTPUT}

NNODES=$(wc -1 < $PBS_NODEFILE)
NRANKS_PER_NODE=32

NTOTRANKS=$((NNODES * NRANKS_PER_NODE))
cd $PBS_O_WORKDIR

mpiexec -n $NTOTRANKS -ppn $NRANKS_PER_NODE \
./hello-pnetcdf ${OUTPUT}/hello-pnetcdf.nc

Job submission script

40 Argonne Leadership Computing Facility

% ncmpidump /eagle/radix-io/${USER}/hello/hello-pnetcdf.nc
netcdf hello-pnetcdf {
// file format: CDF-2 (large file)
dimensions:
di = 790 ;
variables:
char v1(dl) ;
data:

vl = "Hello from rank © of 32\n",
"Hello from rank 1 of 32\n",
"Hello from rank 2 of 32\n",
[..]

"Hello from rank 27 of 32\n",
"Hello from rank 28 of 32\n",
"Hello from rank 29 of 32\n",
"Hello from rank 30 of 32\n",
"Hello from rank 31 of 32\n",

nn
J

Output of “hello-pnetcdf”

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

Argonne &

NATIONAL LABORATORY

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HANDS-ON: writing with Parallel-NetCDF

2-D array in file, each rank writes “YDIM’ (1) rows

Many details managed by pnetcdf library
 MPI-1O File views
« offsets

Be mindful of define/data mode: call ncmpi_enddef()
« Library will take care of header i/o for you

1. Define two dimensions
* ncmpi_def dim()
2. Define one variable
* ncmpi_def var()
3. Collectively put variable
. ncmpi put vara int all()
. ‘start’ and ‘count’ arrays: each process selects different regions

4. Check your work with ‘ncdump <filename>’
. Hey look at that: serial tool reading parallel-written data: interoperability at work

I 41 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF _Hands on HPC Workshop Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Solution fragments for Hands-on

Defining dimension: give name, size; get ID
/* row-major ordering */
NC CHECK (ncmpi def dim(ncfile, , YDIM*nprocs, &(dims[0])))
NC CHECK (ncmpi def dim(ncfile, , XDIM, & (dims[1])))

Defining variable: give name, “rank” and dimensions (id); get ID

Attributes: can be placed globally, on variables, dimensions
10 11 12 13

NC CHECK (ncmpi def var (ncfile, , NC INT, NDIMS, dims,
&varid array));

20 21 22 23
iterations=1;

NC CHECK (ncmpi put att int(ncfile, varid array,
, NC INT, 1, &iterations));

I/O: ‘start’ and ‘count’ give location, shape of subarray. ‘All’ means collective

start[0] = rank*YDIM; start[l] = 0;
count[0] = YDIM; count[l] = XDIM;
NC CHECK(ncmpi put vara int all(ncfile, varid array, start, count, values));
Full example in visualization_io/mpiio-hdf6/hands-on/array
code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneb

42 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Inside PnetCDF Define Mode

* |In define mode (collective)
« Use MPI_F1le_open to create file at create time
« Set hints as appropriate (more later)

« Locally cache header information in memory
« All changes are made to local copies at each process

* At ncmpi_enddef
 Process 0 writes header with MPI_F1ile_write_at
e MPI_Bcast result to others

« Everyone has header data in memory, understands placement of all variables
* No need for any additional header I/O during data mode!

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonnea

I 43 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Inside PnetCDF Data Mode

B Inside ncmpi_put_vara_all (once per variable)

— Each process performs data conversion into internal buffer
— Uses MPI_File_set_view to define file region
— MPI_File_write_all collectively writes data

B At ncmpi_close
— MPI_F1ile_close ensures data is written to storage

B MPI-10 performs optimizations
— Two-phase possibly applied when writing variables

B MPI-IO makes PFS calls

— PFS client code communicates with servers and stores data

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonnea

44 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Inside PnetCDF: Darshan heatmap analysis

IOR writing Parallel-NetCDF (see visualization io/mpiio-hdfb/hands-on/ior/polaris/ior-pnetcdf.sh)

MPI-10
[1] POSIX
125 - = gl 125 sl ‘ 10
— |
—— | 10° 10
100- — 1004 — - —
— 2 - 10° 2
= 10° 5 B
75 4 ——— 5 75 =]
x | . g y 104 o
] E— a3 © - =
* 5o .) 50 10°z
— | -102 8 3
— 8 _ -10? 8
25 == 25 4 F
= o 2] [3] 10
0 =) [0 e -
g g E \/ ; Time bins: 200 o ‘2 v — ~ Time bins: 200
o o o © o 2 g
Time (s) Time (s)

[1]: all processes call MPI write and read — re-reading going to be fast (cached)
[2]: one process wrote header -- small: just one pixel in POSIX
[3]: what you don’t see — only “aggregators” actually do I1/O

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonnea

45 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HANDS-ON: reading with pnetcdf

« Similar to MPI-1O reader: just read one row

« Operate on netcdf arrays, not MPI datatypes

« Shortcut: can rely on “convention”
* One could know nothing about file as in previous slide

* In our case we know there’s a variable called “array” (id of 0) and an attribute called
“iteration”

* Routines you'll need:
* ncmpi_ing_dim to turn dimension id to dimension length
* ncmpi_get att int to read “iteration” attribute
* ncmpi_get vara_int_all to read column of array

<— Nprocs ——

I 46 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF _Hands on HPC Workshop Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Solution fragments: reading with pnetcdf

Making inquiry about variable, dimensions

NC CHECK (ncmpi ing var (ncfile, 0, varname, &vartype, &nr dims,

dim 1ds, &nr attrs));
NC CHECK (ncmpi ing dim(ncfile, dim ids[0], NULL, &(dim lens[O0])));
NC CHECK (ncmpi ing dim(ncfile, dim ids[1l], NULL, &(dim lens[1])));

The “lteration” attribute

NC CHECK (ncmpi get att int(ncfile, O, , <erations));

No file views or datatypes: just a starting coordinate and size — everyone reads same slice in this case

count [0] = dim lens[0]; count[1l] = 1;
starts[0] = 0; starts[1l] = XDIM/2;
NC CHECK (ncmpi get vara int all (ncfile, 0, starts, count, read buf));

47 Argonne Leadership Computing Facility Argonne &

Parallel-NetCDF write-combining optimization

ncmpi iput vara(ncfile, wvaridl, &start, &count, &data,
count, MPI INT, &requests([0]);

ncmpi wait all(ncfile, 2, requests, statuses);

« netCDF variables laid out contiguously

« Applications typically store data in separate variables
« temperature(lat, long, elevation)
* Velocity x(x, y, z, timestep)

HEADER VAR VAR?2 « Operations posted independently, completed

collectively
‘ » Defer, coalesce synchronization

* Increase average request size

I 48 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF _Hands on HPC Workshop Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Example: FLASH Astrophysics

 FLASH is an astrophysics code for
studying events such as supernovae
« Adaptive-mesh hydrodynamics
« Scales to 1000s of processors
 MPI for communication

* Frequently checkpoints:

» Large blocks of typed variables
from all processes

 Portable format

« Canonical ordering (different than
in memory)

« Skipping ghost cells

Vars 0, 1, 2, 3, ... 23

B Ghost cell
B Stored element

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonnea

I 49 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

" n
=COMDINING O

« FLASH writes one variable at a time

 Could combine all 4D variables
(temperature, pressure, etc) into one 5D
variable
» Altered file format (conventions) requires
updating entire analysis toolchain

» Write-combining provides improved
performance with same file conventions

» Larger requests, less synchronization.

50 Argonne Leadership Computing Facility code etc:

FLASH checkpont I/0

Blocking
7 FHonblocking e

GBAsec

.

40396 g13z2 163584

32768 65536
npracs
https://qgithub.com/argonne-Icf/ALCF Hands on HPC Workshop Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HANDS-ON: pnetcdf write-combining

1. Define a second variable, changing only the name
2. Write this second variable to the netcdf file

3. Convert to the non-blocking interface (ncmpi_iput vara int)
. not collective — “collectiveness” happens in ncmpi_wait all
. takes an additional ‘request’ argument

4. Wait (collectively) for completion

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonnea

I 51 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Solution fragments for write-combining

Defining a second variable

NC CHECK (ncmpi def var (ncfile, , NC INT, NDIMS, dims,
&varid array));
NC CHECK (ncmpi def var (ncfile, , NC INT, NDIMS, dims,

&varid other));

The non-blocking interface: looks a lot like MPI

NC CHECK (ncmpi iput vara int(ncfile, varid array, start, count,

values, &(regs[0])));
NC CHECK (ncmpi iput vara int(ncfile, varid other, start, count,
values, &(regs([1l])));

Waiting for I/0O to complete

/* all the I/0 actually happens here */
NC CHECK (ncmpi wait all(ncfile, 2, regs, status));

52 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands on_HPC_Workshop Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Hands-on continued

» Look at the darshan output. Compare to darshan output for single-variable writing or reading
* Results on polaris surprised me: vendor might know something | don’t
* Maybe some kind of small-io optimization?

I 53 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF _Hands_on_HPC_ Workshop Argonne&

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

PnetCDF Wrap-Up

* PnetCDF gives us
« Simple, portable, self-describing container for data

« Collective I/O
« Data structures closely mapping to the variables described

 |If PnetCDF meets application needs, it is likely to give good performance
« Type conversion to portable format does add overhead

« Some limits on (old, common CDF-2) file format:
 Fixed-size variable: <4 GiB
 Per-record size of record variable: < 4 GiB

e 232 _1 records

Contributed extended file format to relax these limits (CDF-5, released in pnetcdf-1.1.0,
November 2009, integrated in Unidata NetCDF-4 .4)

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonnea

I 54 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

The HDF5 Interface and
File Format

e

httos//a i /1 Argonne &
code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop The HDF Group gONne s

55 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

I 56 Argonne Leadership Computing Facility

Hierarchical Data Format, from The HDF Group (formerly of NCSA)
« https://www.hdfgroup.org/

Data Model:
» Hierarchical data organization in single file
« Typed, multidimensional array storage
« Attributes on any HDF5 "object" (dataset, data, groups)

Features:
 C, C++, Fortran, Java (JNI) interfaces
« Community-supported Python, Lua, R
« Portable data format
» Optional compression (even in parallel /O mode)
« Chunking: efficient row or column oriented access
* Noncontiguous I/O (memory and file) with hyperslabs

Parallel HDF5 tutorial:
» https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

(B ¥ e
g g |
The HDF Group

Argonne &

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5
https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5

HDFS5 Groups an
HDF5 groups and

links organize data

objects

d Links

Experiment Notes: /

Serial Number: 99378920
Date: 3/13/09
Configuration: Standard 3

Viz \

lats|HlonNtemp)

=~

57 Argonne Leadership Computing Facility

SimOut

L=
N
The HDF Group

uuuuuuuuuuuuuuuuuu

HDF5 Dataset

Datatype

Froperties

=
/71

, . " Argonne &
58 Argonne LeadeI'Shlp Comput|ng FaC|I|ty The HDF Group NATIONAL LABORATORY

HDF5 Dataset

<

N
Hi|

Datatype: 16-byte integer

Q

Dataspace: Rank =2

Dimensions =5x3
LN
™~

59 Argonne Leadership Computing Facility The HDF Group " Ouowusouror

HDF5 Dataspaces

Two roles:
Dataspace contains spatial information (logical layout) about a dataset stored in a file
 Rank and dimensions

« Permanent part of dataset
definition

Rank = 2

Dimensions = 4x6
Subsets: Dataspace describes application’s data burﬂer and data elements participating in

1/O

Rank = 1
I | | | | | | | | Dimension = 10

A -5
60 Argonne LeadﬂMng Facility code etc: https:/github.com/argonne-Icf/ALCF_Hands_on_HPC Workshop rgonne &%

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Basic Functions

HS5Fcreate (H5Fopen) create (open) File
H5Screate simple/H5Screate create dataspace
H5Dcreate (H5Dopen) create (open) Dataset
H5Sselect_hyperslab select subsections of data
HS5Dread, H5Dwrite access Dataset
HS5Dclose close Dataset
H5Sclose close dataSpace
HSFclose close File

I NOTE: Order not strictly specified LN\

s
code etc: https://github.com/argonne-Icf/ALCF_Hands on_HPC_Workshop The HDF Group Argonnea

61 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

“Hello World” HDFS5 style

Cannot fit all in one slide: here are some highlights (see ‘hello-hdf5.c’ for full example)

file = HS5Fcreate(argvi[l], H5F ACC TRUNC, H5P DEFAULT,
file access property list);

- “property lists” used a lot in HDF5 (see next
slide)

- Serial interface came first, with parallel
features added later

/* in this simple example everyone writes their string to a
1-d dataset,; HDF5 supports variable length arrays ("ragged
arrays') but these datatypes have odd interactions with parallel

i/o */

/* like writing to a plain file, we'll create one big variable
and everyone can write their string to the right (non-
overlapping) place in the file */

hid t dataset, datatpye, file space;

hsize t size=varlen;

file space = H5Screate simple(l, é&size, NULL);

/* remember we got 'offset' from the MPI Exscan above */

hsize t start=offset, count=len;

status = H5Sselect hyperslab(file space, H5S SELECT SET,
&start, NULL, &count, NULL);

- Lots of flexibility in how memory, file regions described
- Lots more we could say about “hyperslab”

code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneé

62 Argonne Leadership Computing Facility

NATIONAL LABORATORY

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HDFS5 example: opening with MPI-IO

/* Initialize MPI */
MPI Init(&argc, &argv);

/* Create an HDF5 file access property list */
fapl id = HS5Pcreate (HS5P_FILE ACCESS);

/* Set file access property list to use the MPI-IO file driver */
ret = H5Pset fapl mpio(fapl id, MPI_COMM WORLD, MPI INFO NULL);

/* Create the file collectively */
file id = HS5Fcreate(argv[1l], H5F _ACC_TRUNC, H5P DEFAULT, fapl id);

/* Release file access property list */
ret = H5Pclose(fapl _id);

I 63 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF _Hands_on_HPC_ Workshop Argonne&

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HDFS5 example: setting up data transfer

, , MEMORY
/* Select column of elements in the file dataset */
file start[0] = 0; file start[1] = mpi_rank; _ .
file count[@] = DIMO; file count[1l] = 1;
ret = H5Sselect_hyperslab(file space id, H5S_SELECT_ SET, DIMO elements
file start, NULL, file count, NULL);

FILE
mem_start[0] = O; mem_count[@] = DIMO; DFOCS
ret = H5Sselect hyperslab(mem space id, H5S SELECT_SET, P
mem_start, NULL, mem_count, NULL);
/* Set up the collective transfer properties list */
dxpl id = HS5Pcreate(H5P_DATASET XFER); o
ret = H5Pset dxpl mpio(dxpl id, H5FD MPIO COLLECTIVE); %
/* Write data (one column of doubles) collectively */
ret = H5Dwrite(dset _id, H5T NATIVE DOUBLE, mem_space_ id,
file space id, dxpl_id, write buf);
I 64 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF _Hands on HPC Workshop Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Effect of HDF5 Tuning

- HDF5 property lists can have big impact on Operation counts Independent Coll. MD
internal operations o

POSIX Write 3680007
. MPI-10 Indep write 3680007 7 0
« Collective I/O vs. Independent I/O
* Huge reduction in operation count MPI 10 Collective 0 16 48
* Implies all processes hit I/O at same time Write
POSIX Read 3680113 115 10
« Collective metadata (new in 1.10.2) MPI-IO indep read 3680113 113 8
» Further reduction in op count, especially reads
(reading HDF5 internal layout information) _
MPI-IO collective read 0 16 16

« Big implications for performance at scale

Selected Darshan statistics for 16 MPI processes writing 230 K

doubles to HDF dataset, reading back same.
visualization_io/mpiio-hdf5/hands-on/hdf5/h5par-comparison.c

(A N

/.
The HDF Group _ e
65 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF_Hands_on_HPC_Workshop Argonneﬁ

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Effect of HDF5 Tuning

HDF5 property lists can have big impact on

internal operations

Collective I/0O vs. Independent I/O

* Huge reduction in operation count

Implies all processes hit I/O at same time

464

=

3

m

o

g

w

%

z C —
RS
OH o o o (=] %

Collective metadata (new in 1.10.2)

* Further reduction in op count, especially reads
(reading HDF5 internal layout information)

« Big implications for performance at scale

187

[g W
rn
The HDF Group

66 Argonne Leadership Computing Facility

Ra

132

66 4

El

ol Time bins: 156

i
<

._.
o
2
Data (B): read, write
i
"
N

i
<

I
I
It
It
I
I

I
It
1{

Pm "= = e e e e el = e

32 4

E

5

H

=

E

w

o

o

g
o
o

=
2

visualization_io/mpiio-hdf5/io-sleuthing/examples/hdf5

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop

>
Data (B): read, write

thEB) ad, write

Juspuadapul

9AI}09]|02

Argonne &

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

HDFS5 in other languages

« Python:
* Hb5py: http://www.h5py.org/
« closely coupled with mpi4py and numpy;
« some collective tuning not exposed at python level

e C++:
« Highfive: https://github.com/BlueBrain/HighFive
» header-only interface to HDF5 C API

I 67 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF _Hands on HPC Workshop Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
http://www.h5py.org/
https://github.com/BlueBrain/HighFive

New HDF5 features:

* New in HDF5-1.14.0
« Async operations
» Potential for background progress
« Multi-dataset 1/0
« Similar to pnetcdf “operation combining”

68 Argonne Leadership Computing Facility

uuuuuuuuuuuuuuuuuu

Data Model I/O libraries

= Parallel-NetCDF: http://www.mcs.anl.gov/pnetcdf
= HDF5: http://www.hdfgroup.orqg/HDF5/

= NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
— netCDF API with HDF5 back-end

= ADIOS: http://adiosapi.org
— Configurable (xml) I/O approaches

= SILO: https://wci.linl.gov/codes/silo/
— A mesh and field library on top of HDF5 (and others)

» Hb5part: http://vis.lbl.gov/Research/AcceleratorSAPP/
— simplified HDF5 API for particle simulations

= GIO: https://svn.pnl.gov/gcrm
— Targeting geodesic grids as part of GCRM

= PIO:
— climate-oriented /O library; supports raw binary, parallel-netcdf, or serial-netcdf (from master)

= ... Many more: consider existing libs before deciding to make your own.
= Note absence of a “machine learning” library — research opportunity for someone!

code etc: https://github.com/argonne-Icf/ALCF Hands on HPC Workshop Argonnea

69 Argonne Leadership Computing Facility

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
http://www.mcs.anl.gov/pnetcdf
http://www.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://adiosapi.org/
https://wci.llnl.gov/codes/silo/
https://svn.pnl.gov/gcrm

» Lots of activity, history making I/O better... Still a lot to do!
« Workflow, task-oriented, Al/ML

* ALCF consultants, research community eager to help

I 70 Argonne Leadership Computing Facility code etc: https://github.com/argonne-Icf/ALCF _Hands on HPC Workshop Argonnea

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

	Slide 1
	Slide 2: I/O libraries for Parallel Perf Part 1: MPI-IO
	Slide 3: MPI-IO
	Slide 4: “Hello World” MPI-IO style: contiguous
	Slide 5: “Hello World” MPI-IO style: non-contiguous in memory
	Slide 6: “Hello World” MPI-IO style: non-contiguous in file
	Slide 7: RUNNING
	Slide 8: Output on Aurora
	Slide 9: Under the hood: DAOS (essentially)
	Slide 10: Key takeaways
	Slide 11: The IOR benchmark
	Slide 12: Hands-on: IOR and stripe size
	Slide 13: Contention in benchmarkig
	Slide 14: Hands on: IOR and stripe count
	Slide 15: Decomposition
	Slide 16: Contiguous and Noncontiguous I/O
	Slide 17: I/O Transformations
	Slide 18: Request Size and I/O Rate
	Slide 19: Reducing Number, Increasing Size of Operations
	Slide 20: Noncontig with IOR
	Slide 21: Darshan: Characterizing Application I/O
	Slide 22: How does Darshan work?
	Slide 23: Data Sieving in Practice
	Slide 24: Data Sieving: time line
	Slide 25: Avoiding Lock Contention
	Slide 26: Two-Phase I/O Algorithms
	Slide 27: Two-phase I/O in Practice
	Slide 28: More investigation: Darshan heatmaps (Polaris, Lustre)
	Slide 29: DAOS: Collective I/O vs scatter-gather I/O
	Slide 30: Tuning MPI-IO: info objects
	Slide 31: Tuning MPI-IO: cray-specific hints
	Slide 32: Data Model Libraries
	Slide 33: The Parallel netCDF Interface and File Format
	Slide 34: Parallel NetCDF (PnetCDF)
	Slide 35: Parallel netCDF (PnetCDF)
	Slide 36: netCDF Data Model
	Slide 37: Record Variables in netCDF
	Slide 38: Pre-declaring I/O
	Slide 39: “Hello world” Parallel-NetCDF style
	Slide 40: Running on Polaris
	Slide 41: HANDS-ON: writing with Parallel-NetCDF
	Slide 42: Solution fragments for Hands-on
	Slide 43: Inside PnetCDF Define Mode
	Slide 44: Inside PnetCDF Data Mode
	Slide 45: Inside PnetCDF: Darshan heatmap analysis
	Slide 46: HANDS-ON: reading with pnetcdf
	Slide 47: Solution fragments: reading with pnetcdf
	Slide 48: Parallel-NetCDF write-combining optimization
	Slide 49: Example: FLASH Astrophysics
	Slide 50: FLASH Astrophysics and the write-combining optimization
	Slide 51: HANDS-ON: pnetcdf write-combining
	Slide 52: Solution fragments for write-combining
	Slide 53: Hands-on continued
	Slide 54: PnetCDF Wrap-Up
	Slide 55:
	Slide 56: HDF5
	Slide 57: HDF5 Groups and Links
	Slide 58
	Slide 59: HDF5 Dataset
	Slide 60: HDF5 Dataspaces
	Slide 61: Basic Functions
	Slide 62: “Hello World” HDF5 style
	Slide 63: HDF5 example: opening with MPI-IO
	Slide 64: HDF5 example: setting up data transfer
	Slide 65: Effect of HDF5 Tuning
	Slide 66: Effect of HDF5 Tuning
	Slide 67: HDF5 in other languages
	Slide 68: New HDF5 features:
	Slide 69: Data Model I/O libraries
	Slide 70: Wrap-up

