Hagfish Self-Defense: Non-linear Rheology of a Biopolymer Physical Gel

Randy Ewoldt
Seminar

We report the first experimental measurements of nonlinear rheological material properties of hagfish gel, a volume-expanding self-defense material composed of a hydrated biopolymer/biofiber gel network. To explain the observed nonlinear viscoelastic behavior, we develop a microstructural constitutive model that has also proven useful for other biopolymer physical gels with non-covalent crosslinks. The linear elastic modulus of the network is observed to be G' ~ 2 Pa for timescales of 0.1s to 10s, making it one of the softest elastic biomaterials known. Nonlinear rheology is examined via simple shear deformation, and we observe a secant elastic modulus which strain-softens at large input strain while the local tangent elastic modulus strain-stiffens simultaneously. This juxtaposition of simultaneous softening and stiffening suggests a general network structure composed of nonlinear elastic strain-stiffening elements, here modeled as Finite Extensible Nonlinear Elastic (FENE) springs, in which network connections are destroyed as elements are stretched. We simulate the network model in oscillatory shear and creep, including instrument effects which cause inertio-elastic creep ringing. The network model captures the simultaneous softening of the secant modulus and stiffening of tangent modulus as the model enters the nonlinear viscoelastic regime.