High-Performance Distributed RMA Locks

Event Sponsor: 
Mathematics and Computer Science Division Seminar
Start Date: 
Jan 13 2017 - 1:30pm
Building/Room: 
Building 240/Room 4301
Location: 
Argonne National Laboratory
Speaker(s): 
Torsten Hoefler
Speaker(s) Title: 
ETH Zürich, Switzerland
Host: 
Pavan Balaji

We propose a topology-aware distributed Reader-Writer lock that accelerates irregular workloads for supercomputers and data centers. The core idea behind the lock is a modular design that is an interplay of three distributed data structures: a counter of readers/writers in the critical section, a set of queues for ordering writers waiting for the lock, and a tree that binds all the queues and synchronizes writers with readers. Each structure is associated with a parameter for favoring either readers or writers, enabling adjustable performance that can be viewed as a point in a three dimensional parameter space. We also develop a distributed topology-aware MCS lock that is a building block of the above design and improves state-of-the-art MPI implementations. Both schemes use non-blocking Remote Memory Access (RMA) techniques for highest performance and scalability. We evaluate our schemes on a Cray XC30 and illustrate that they outperform state-of-the-art MPI-3 RMA locking protocols by 81% and 73%, respectively. Finally, we use them to accelerate a distributed hash table that represents irregular workloads such as key-value stores or graph processing.

Bio:
Torsten is an Assistant Professor of Computer Science at ETH Zürich, Switzerland. Before joining ETH, he led the performance modeling and simulation efforts of parallel petascale applications for the NSF-funded Blue Waters project at NCSA/UIUC.  He is also a key member of the Message Passing Interface (MPI) Forum where he chairs the "Collective Operations and Topologies" working group.  Torsten won best paper awards at the ACM/IEEE Supercomputing Conference SC10, SC13, SC14, EuroMPI'13, HPDC'15, HPDC'16, IPDPS'15, and other conferences.  He published numerous peer-reviewed scientific conference and journal articles and authored chapters of the MPI-2.2 and MPI-3.0 standards. He received the Latsis prize of ETH Zurich as well as an ERC starting grant in 2015. His research interests revolve around the central topic of "Performance-centric System Design" and include scalable networks, parallel programming techniques, and performance modeling.  Additional information about Torsten can be found on his homepage at htor.inf.ethz.ch.