Skip to main content

Argonne Leadership Computing Facility

  • ALCF Resources
    • Computing Resources
      • Aurora
      • Polaris
      • Sophia
      • Crux
      • ALCF AI Testbed
      • Evaluation Testbeds
      • Storage and Networking
    • Facility Expertise
      • Facility Expertise

    Leadership Computing Resources

    The ALCF provides users with access to supercomputing resources that are significantly more powerful than systems typically used for open scientific research.

    Featured: Aurora

    Aurora
  • Science and Engineering
    • Output
      • Projects
      • Publications
      • Case Studies
    • Allocation Programs
      • INCITE Program
      • ALCC Program
      • Director’s Discretionary
      • Early Science Program
      • NAIRR Program

    Computational Science

    The ALCF is accelerating scientific discoveries in many disciplines, ranging from chemistry and engineering to physics and materials science.

    Featured: Engineering

    Visualization
  • Community and Outreach
    • Partnerships
      • Industry
      • Collaborations
    • Educational Outreach
      • Women in STEM
      • Student Programs
    • Community
      • NAIRR Pilot
      • ALCF Lighthouse Initiative
      • Exascale Computing Roundtable

    Growing the HPC Community

    The ALCF is committed to providing training and outreach opportunities that prepare researchers to efficiently use its leadership computing systems, while also cultivating a diverse and skilled HPC workforce for the future.

  • About
    • Get to Know More
      • Leadership
      • People
      • Organizational Chart
      • Code of Conduct
      • User Advisory Council
      • History
    • Visit
      • Visiting ALCF
      • Tours
    • Latest
      • News
      • Careers
    • Press Kits
      • ALCF Media Kit
      • Aurora Media Kit
      • Reports Archive

    Accelerating Science

    The Argonne Leadership Computing Facility enables breakthroughs in science and engineering by providing supercomputing resources and expertise to the research community.

  • Support
    • Current
      • Machine Status
      • Facility Updates
      • MyALCF
    • Training
      • Training Videos & Slides
      • Training Overview
      • Training and Events

    Support Center

    The ALCF Support Center assists users with support requests related to their ALCF projects.

    Help Desk
    Hours: 9:00am-5:00pm CT M-F
    Email: support@alcf.anl.gov

    Guides

    • Getting Started
    • User Support
    • Machines
    • Running Jobs
    • Data Management
    • Services
    • Account and Project Management
    • Facility Policies

    Featured: Get Started

    Diagram Illustration

    Featured: MyALCF

    User Icon

Tactical

  • News
  • Events
  • People
  • CAREERS
  • MyALCF
Menu

Tactical

  • News
  • Events
  • People
  • CAREERS
  • MyALCF

Breadcrumb

  1. Home

Molecular Electrostatic Potential and Electron Density of Large Systems in Solution Computed with the Fragment Molecular Orbital Method

Publications Journal of Physical Chemistry

An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families

Publications Journal of Physical Chemistry

Anharmonic Rovibrational Partition Functions at High Temperatures: Tests of Reduced-Dimensional Models for Systems with up to Three Fluxional Modes

Publications Journal of Physical Chemistry

Periodic Coulomb Tree Method: An Alternative to Parallel ParticleMesh Ewald

Publications Journal of Chemical Theory and Computation

String Method for Protein−Protein Binding Free-Energy Calculations

Publications Journal of Chemical Theory and Computation

Hybrid Distributed/Shared Memory Model for the RI-MP2 Method in the Fragment Molecular Orbital Framework

Publications Journal of Chemical Theory and Computation

Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal-Organic Framework Database: CoRE MOF 2019

Publications Journal of Chemical & Engineering Data

Machine Learning Applied to a Variable Charge Atomistic Model forCu/Hf Binary Alloy Oxide Heterostructures

Publications Chemistry of Materials

Effects of Off‐Fault Inelasticity on Near‐Fault Directivity Pulses

Publications Journal of Geophysical Research: Solid Earth

AI Meets Exascale Computing: Advancing Cancer Research With Large-Scale High Performance Computing

Publications Frontiers in Oncology

Pagination

  • First page « First
  • Previous page ‹ Previous
  • …
  • Page 266
  • Page 267
  • Page 268
  • Page 269
  • Current page 270
  • Page 271
  • Page 272
  • Page 273
  • Page 274
  • …
  • Next page Next ›
  • Last page Last »
Subscribe to

ALCF

A DOE Office of Science User Facility

Argonne National Laboratory
9700 South Cass Avenue
Building 240
Argonne, IL 60439
Contact

Follow ALCF on social media Facebook LinkedIn YouTube

Internal Admin
Department of Energy Argonne National Laboratory UChicago Argonne, LLC

© 2025 Argonne National Laboratory